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Preface

-I-he Subset Preprocessor Language (SPP) is a programming language
designed to develop applications in the IRAF programming environment.
This is a reference manual intended to explain the languaigenify to
allow a programmer to develop useful applications. As such, it comprises
two fundamental parts. The first is a detailed reference describing the lan-
guages features, syntax, and structure. The other is a fairly complete
description of the interfaces to the IRAF environment. Separate chapters
are devoted to error handling and making IRAF tasks. Four appendixes
cover the system defined include files, detailed examples and other helpful
hints, and utilities for debugging applications code. Appendix E describest
the STSDAStables utilities. Simple examples of specific concepts are
scattered throughout this text. These are usually fragments of code
intended to illustrate the concept under discussion. Howéygendix B
contains a few complete examples.

This isnot a programming textbook. It is assumed that the reader is con-
versant with some programming language. Because of the similarity of
SPP to Fortran and C, experience with those languages is certainly an asset.
It is also assumed that the reader is familiar with IRAF to some extent. That
is, that there is some experience with the concepts behind the structure of
programs and rationale for the system. In addition, some knowledge of the
IRAF command language (cl) is assumed.

Some comments on the syntax in this text may be useful.

» Literal text and reserved keywords to be used in code as-is are set in
typewriter style to distinguish them from names of objects and real
English words. For exampl@yr ocedur e, poi nt er, or maxch are
keywords that may be used in SPP code. Another example is a directory
or file name, which, as literal text, would be set in typewriter style:
gi o$doc/ gi o. hl p orhel p cursor

Xiii
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Preface

When a reserved word ends in an italicized capitdhe T is a place-
holder intended to be replaced by a data type character (see for example,
“Arithmetic Operators” on page04). These data type specifiers
include:

- X - Complex

- d-Double

- | -Long

- s - String

- ¢ -Char

Package names are set in bold face, for exardpbe;jmio.

Generic names for entities replaced by some specific keyword are set in
italic style, such as a template synthxr (init; test control)
demonstrating theor syntax.

Square brackets used in a templéte () surround optional text.

Function names are usually referred to in the text withguimaents but
with empty parentheses to distinguish them from other identifiers.

SPP is a part of the IRAF application environment. IRAF was devel-

oped by the National Optical Astronomy Observatories (NOAQO), primarily
for the analysis of astronomical data. Dowagyl is primarily responsible

for the design and management of the IRAF core system, including SPP
Additional examples of how to develop IRAF applications code can be
found inAn Introductory Usess Guide to IRAF SPP Bgrammingby R.
Seaman [Seaman92].

Chapter 1 of this manual is basedyily on Doug ddy’s A Refeence

Manual for the IRAF Subset &rocessofTody83]. Chapter 2 draws from
the design documents for the various interfaces, and Appendix E is based
on earlier document by the STSDAS Group.



CHAPTER 1:

Language
Syntax

-I-he SPP language is based on the Ratfor language. ,Ratfom, is
based on Fortran, with extensions for structured contro| @tw The lexi-
cal form, operators, and control flow constructs are identical to those pro-
vided by Ratfor The major diferences are the data types, the form of a
procedure, the addition of inline strings and character constants, the use of
square brackets for arrays, and tresk statement. In addition, the SPP
I/O facilities provided are quite d#rent and are tailored to the IRAF envi-
ronment. The syntax of the SPP language is fairly straightforward and fun-
damentally similar to most other high-level languages. While it is based on
the Ratfor language, there are elements of C as well as elements of Fortran.
SPP is a preprocessed language. That is, there is no SPP compiler per se,
but it is translated into another compilable language. In fact, SPP is first
translated into Ratfpiwhich is processed into Fortran. The xc compiler
performs all preprocessing, compilation, and linkage. This chapter
describes the language in detail. Chapter 2 describes the procedure libraries
available to connect a program to the outside world, Chapter 4 describes
how to compile an application as well as how it fits into the IRAF environ-
ment. Appendix B presents some basic examples and hints for writing real
software.

Lexical Form

An SPP program consists of a sequence of lines of text. The length of a
line is arbitrarybut SPP is guaranteed to be able to handle only lines of up
to 160 characters long. The end of each line is marked by a “newline” char-
acter
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Character set

SPP uses the extended ASCII character set which includes the charac-
ters listed in @ble 1.1

Characters Type

a-z All lower case letters
A-Z All upper case letters
0-9 All digits

# _ &, etc. Special characters
[tab], [space] White space

Table 1.1: SPP Character Set.

Some of these may be used in identifier names and numeric constants.
The remaining ones have specific meaning within the language. SPP does
not distinguish between lower case and upper case except for literal strings
(inside double quotes). Any character may be used in a literal string. The
specific meaning of special characters is described in the appropriate sec-
tion.

White Space

White space is defined as one or more tabs or spaces. A newline nor-
mally marks the end of a statement, and is not considered to be white
space. White space always delimits tokens, the smallest recognized ele-
ments of the language. Keywords and operators will not be recognized as
such if they contain embedded white space. Howeherabsolute amount
of white space is not relevant and there is no enforced structure of text on
the line. Indentation and judicious use of white space greatly improves
readability Note, howeverthat spaces, including trailing blanks, are sig-
nificant in literal quoted strings such as text to be written to standard out-
put.
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Comments

Comments begin with th# character and end at the end of the line.
That is, anything after# is ignored by the preprocessor until the next end
of line. Thus, in-line comments may follow SPP statements.

Continuation

Statements may span several lines. A line that ends with an operator
(excluding/ ) or punctuation character (comma or semicolon) is automati-
cally understood to be continued on the following line.

Constants

SPP supports several types of constants. These are described below
(Predefined constants are described in Appendix A.)

Integer Constants

A integer constant is a sequence of one or more of the digits in the
range0 through9. An octal constant is a sequence of one or more of the
digits in the rang® through7, followed by the letteb or B. A hexadeci-
mal constant is one of the digits in the rafgarough9, followed by zero
or more of the digit® through9, the letters in the rangethroughf , or
the lettersA throughF, followed by the lettex or X. Note that a hexadeci-
mal constant must begin with a decimal digit (zero through nine) to distin-
guish it from an identifielThe notation shown inable 1.2 more concisely
summarizes these definitions.

Integer Type Definition Examples
Decimal [+]-][0-9]+ 42,-999, 0
Octal [+|-][0-7]+[b|B] 42b, 7778
Hexadecimal [+]-][0-9][0-9a-fA-F]*[x|X] 0ffx, 0123ABCx

Table 1.2: Integer Constant Notation.

In the notation used aboveé, means one or mor&, means zero or
more,— implies a range, and means “or”. Brackets[.(.] ) define a
class of characters. ThugD=9]+ ” reads “one or more of the characters
in the range 0 through 9.” An integer constant has the same range as the



4

Chapter 1: Language Syntax

range of the underlaying Fortran constant. Since this changes from
machine to machine, SPP has the predefined corigéaqtl NT as the
maximum allowable integer (see Appendix A).

Floating Point Constants

A floating point constant (typeeal ordoubl e) consists of a decimal
integer optionally preceded by a sigr @r - ), followed by a decimal
point, optionally followed by a decimal fraction, followed by one of the
characterse, E, d, D, followed by a decimal integewhich may be nega-
tive. Either the decimal integer or the decimal fraction part must be present.
The number must contain either the decimal point or the exponent (or
both). Embedded white space is not permitted. The following are all legal
floating point numbers: 01, 100., 100. 01, 1E5, 1e-5, - 1. 00D5,

1. 0d0. A conpl ex constant consists of two floating point constants sep-
arated by a comma and enclosed in parenthespesesenting the real and
imaginary parts( 1. 0, 0. 0) for example. A floating constant may also

be given in sexagesimal, i.e., in hours and minutes, or in hours, minutes,
and seconds, or any other units in which places of the number vary by a
factor of sixty Numerical fields are separated by colon charactgrsagd

there must be either two or three fields. The number of decimal digits in the
second field and in the integer part of the third field is limited to exactly
two. The decimal point and any fraction is optional. The low level proce-
dures that parse input recognize this syntax as well, making it convenient
for users to enter values in a natural format (time or equatorial coordi-
nates).

Coordinate Floating Point
00: 01 0.017

00: 00: 01 0.00028

01: 00: 00 1.0

01: 00: 00. 00 1.0

01:30.7 1.516

Table 1.3: Coordinate and Floating Point Equivalents.

The last example has only two fields with the last including a fraction.
These two fields are then thedast and next lgest fields, such as hours
and minutes of time or degrees and minutes of arc. Note that there may be
some problems in rounding, howeveffhe predefined constants
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MAX_REALand MAX_DOUBLEcontain the host-dependent maximum
permissible valuesfor real and double constants, respectively.

Character Constants

A character constant consists of from one to four digits delimited at
front and rear by the single quote (" ), as opposed to the double quotes used
to delimit string constants). A character constant is numerically equivalent
to the corresponding decimal integer, and may be used wherever an integer
constant would be used. On most systems, characters are represented in
ASCII, therefore the character values are the ASCII values.

Character Constant Decimal Value Interpretation

007’ 7 Theinteger 7, CTRL G, (BEL)
‘a’ 97 The character a

n’ 10 The newline character

A\ 92 The character \

Table 1.4: Character Constants.

The backslash character (\) is used to form escape sequences, which are
gpecial non-printed characters. SPP recognizes the following escape
sequences:

: Decimal Control ASCI|
Escape | nterpretation .
Value Sequence Mnemonic
\b Backspace 8 CTRL H BS
\f Form feed 12 CTRL L FF
\n Newline 10 CTRL J LF
\r Carriage return 13 CTRL M CR
\t Horizontal tab 9 CTRL | HT

Table 1.5: Character Constant Escape Sequences.
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String Constants

A string constant is a sequence of characters enclosed in double quotes
("), "image" for example. The double quote itself may be included in
the string by escaping it with a backslashbg\"xyz" ). All of the
escape sequences given above are recognized. The backslash character
itself must be escaped to be included in the string. A string constant may
not span lines of text. For example,

call strcpy ("This is a long character string
with an embedded newline.", outstr, SZ_LINE)

Would result in the error “Newline while processing string.” Howgyeu
may include a newline in a string explicitly with the newline character
for example:

call strcpy ("A string\nwith a newline.", outstr, SZ_LINE)

Identifiers

An identifier is the name used to refer to a variable or a procedure.
Identifiers are constructed of an upper or lower case, [&tiewed by zero
or more upper or lower case letters, digits, or the underscore character
Identifiers may be as long as desired, but only the first five characters and
the last character are significant. Identifiers are used for variable names and
procedure names, including built-in, intrinsic functions, as well as other
language constructs. SPP maps all identifiers to a Fortran identifier that
conforms to Fortran 66 standards. That is, they must be six character or
fewer and may not include underscores. SPP performs the mapping by first
removing underscores and taking up to the first five characters and the last
characterlf there is a conflict between two SPP identifiers that map to the
same Fortran identifiethe last character of the mapped name is replaced
with a digit in one of the names. It may be instructive to see the mappings.
The mapped SPP and Fortran identifiers are listed as comments in the For-
tran output by xc (using thé option) at the end of the translated source.
The definition of an identifier may be summarized using the following
rules:
[a—zA-Z][a—zA-Z_0-9]*
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See “Constants” on pa@efor an explanation of the syntax of this
shorthand. The following example illustrates valid and invalid SPP identifi-
ers:

Valid ldentifiers Invalid Identifiers

For 2next lawhi |l e -«——— Starts with numeral,
MAX_nunber s upé&t o not letter

Upt S \

MAX_VALUES Contains &, an
MAX_VARI ABLES invalid special character

Figure 1.1: Identifier Syntax.

Note that the last two map to the same Fortran variable. Therefore, if
they were in the same source file, SPP would change the mapping of one to
make them unique.

The identifiers in Figure 1.2 are reserved. That is, do not use them as
variable or procedure names. Note that not all of them are actually used at
present.

auto
begin
bool
br eak
cal
case
char

cl getpar double getpix | ong r eal struct virtua
cl putpar el se goto map repeat switch vstruct
conmon end if next return task whi | e
conpl ex entry iferr pl ot scan true

dat a extern instruct printf short uni on

define fal se i ncl ude procedure sizeof unmap

do for i nt put pi x static unti

Figure 1.2: Reserved Identifiers.

Fortran statements

Fortran statements may be used in SPP source by preceding the state-
ment with a percent charactés Thexc compiler then passes this state-
ment through unchanged. Remember that Forti@es require specific
positioning of the text on the line, unlike SB® you must include the nec-
essary spaces between thescape character and the beginning of the For-
tran statement. For example:

# Fortran foll ows, note
# 6 spaces after %
% | NTEGER | NTF

Also keep in mind that while most SPP data types are the same as For-
tran, character strings are not. See “Calling Fortran Subprograms” on
page38 and “Fortran Strings” on pad@5 for more details.
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Data Types

The subset preprocessor language supports a fairly wide range of data
types. The actual mapping of an SPP data type into a Fortran data type
depends on what the ¢gat compiler has to tdr. SPP supports the usual
fundamental data types: integdloating point, complex, boolean, and
characterSome of these have more than one subtype, varying by the size
of each value. The actual size in bytes of a particular data type depends on
the host system. IRAF maintains a structure containing these definitions,

available to the applications programmer

Declaration Data Type Fortran Equivalent
bool Boolean LOd CAL

char Character shortl NTEGER
short Short integer shortl NTEGER

i nt Integer | NTEGER

| ong Long integer long ! NTECER

real Single precision floating REAL

doubl e Double precision floating DOUBLE PRECI SI ON
conpl ex Single precision complex COWPLEX

char[] String (character array) shortl NTEGER array
poi nt er Pointer to memory | NTEGER

extern External function EXTERNAL

Table 1.6: Data Types.

Note that the size of the variable depends on its hardware implementa-
tion which in turn depends on the combination of the Fortran compiler and
the host operating system. For example, AX\Fortran, short integers are
implemented ad NTEGER* 2, includingchar and stringsdhar arrays),
and long integers are implemented &NTEGER* 4, which is the same
size (four bytes) asNTEGER, by default. In addition to the seven primi-
tive data types, the SPP language provides the abstract type.pbimger
SPP language makes no distinction between pointersfévettif types of
objects, unlike more strongly typed languages such as CeXthern
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type is also available to declare a function as a variable, as in the Fortran
EXTERNAL statement.

Integer

SPP has three signed integer data types. There is no byte or unsigned
integer data type.

» gshort - The smallest integer type, usually two bytes.

* int - A signed integer having the size of the fundamental host system
word size, usually 32 bits or four bytes. This is equivalent to the Fortran
| NTEGER declaration.

* long - The lagest integer type, usually the same as.

Character

Thechar data type belongs to the family of integer data types, i.e., a
char variable or array behaves like an integer variable or.arrechar
andshort data types are signed integers (i.e., they may take on negative
values).

String

A string is an array of typehar terminated by an end of string charac-
ter (ECS). Strings may contain only character data (values 0 through 127
decimal), and must be delimited BOS. A character string may be
declared in either of two ways, depending on whether initialization is
desired:
char i nput _fil e[ SZ_FNAME]
string |egal_codes "efgdox"
char X[ 15]

The preprocessor automatically adds one to the declared array size, to
allow space for th&eOS marker However the space used by tHeOS
marker is not considered part of the string. Thusctiner arrayx[ 15]
will contain 16 elements, space for up to 15 characters, pluE@Be
marker

It is probably a good idea to use@dd number for the string size decla-
ration so that the resulting array contains an even number of elements. This
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permits alignment of strings dilong word boundariel Sincechar is
implemented as FortrdrNTEGER, whose size is usually four bytes, some-
times referred to as a long word. Access to memory is usually nibre ef
cient if the variables are placed matching the addressable pieces

Note that the string value need not fill the declared sizeEOSechar-
acter signals the end of the string. This is in contrast to Fortran strings,
which do not include a terminator character and thus have an implicit size
equal to the declared size and are padded with trailing blanks to the string
length. RatherSPP strings are practically identical to the concept of strings
in C. Therefore, it is not possible to call a Fortran subroutine directly that
expects a string in the calling sequence. Howdkere are procedures that
convert between SPP and Fortran strings. (See “Calling Fortran Subpro-
grams” on pag8&8). Note that in most procedures that take a strigg-ar
ment, there is also angument that specifies the maximum string size. See
Chapter 2 for specific library procedures.

Floating point

Floating point variables may be single precisioadl ), double preci-
sion doubl e), or complex ¢onpl ex) and behave as the equivalent For-
tran floating point variables.

» real - A single precision value equivalent to the ForREAL data type.

» double - A double precision floating point value, equivalent to the For-
tranDOUBLE PRECI SI ON data type.

» complex - A pair of single precision floating point values equivalent to
the FortrarCOMPLEX data type.

Boolean

The only permissible values for a boolean variable tareae and
f al se. They are used as flag variables or used in test expressions of con-
structs such asf andwhi | e. Note the distinction betwedioolean vari-
ables and thenteger constant parametersES and NO, the latter are
sometimes used as flags.

1. A glossary of terms appears on page 237.
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Pointer

Pointers are used to reference dynamically allocated mensey
“Memory Allocation — memio” on pag&3 for a more complete discus-
sion of dynamically allocated memorylore abstractlypointers may be
used to reference “structures,” allocated memory with a particular arrange-
ment of variables of diéring data types and having a specific structure in
memory

Declarations

All SPP variables must be declared. This includes scalars and arrays, as
well as functions. All declarations must precede the body of the procedure.
That is, they must be between fireocedur e statement and theegi n
statement. Although the language does neqtire that procedure gu-
ments be declardukfore local variables and functions, it is customary and
a good practice. The syntax of a type declaration is the same for parame-
ters, variables, and procedures.
type_spec object [, object [,... ]]

Here, type spec may be any of the seven fundamental data types, a
derived type such gsoi nt er, orext ern. A list of one or more data
objects follows. Arobject may be a variable, arragr procedure. The dec-
laration for each type of object has a unique syntax, as follows:
procedure identifier()
variable identifier
array identifier[dinension_list]

Note that all declaration statementast begin at the first character of
the line. That is, there may be no white space between the beginning of the
line and the beginning of the declaration.

Scalar Variables

Scalar variables are declared with the data type statements and the name
of the variable. For example:

i nt r ows # Nunber of rows

i nt col s # Nunmber of col umms
real X, VY # Coordi nat es

bool ver bose # Print verbose output?

Customarily most variables are described by an in-line comment.
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Arrays

Arrays are declared similarly to scalars, with the array size appended to
the variable name and enclosed in square bradketad] ). The sizes of
each dimension are separated by commas within the brackets.
type_spec object[dinf,dim... ]]

Note that here the outer square brackets are required, the inner ones rep-
resent optional multiple dimensions. Arrays may be up to seven dimen-
sions and are one-indexed by default. That is, the first element is numbered
one. Multiply dimensioned arrays are ordered such that the leftmost dimen-
sions vary the fastest, as they are Fortran arrays. Arrays are referenced
using the variable name with the element number(sguare brackets
([ 1)- As many dimensions must be used in the reference as in the declara-
tion. It is not permitted to address an array outside its declared scope, but is
not detected by the compilefhe following examples illustrate how to
declare subscripted variables in SPP:

i nt i vec[ 100] # An integer vector with 100 el ements
char I'i ne[ SZ_LI NE] # A line of text
r eal i mage[ 100, 100] # | mage buffer

Example 1.1: Declaring Subscripted Variables.

The last example declaresrage to be 100 by 100 elements in size.
The first element would be specified asage[ 1, 1], followed by
i mge[ 2, 1], image[3,1], .. image[1l, 2], i mage[ 2, 2], ..
i mage[ 100, 100] . The size of each dimension of an array may be spec-
ified by any compile time constant expression, or by an integer parameter
or parameters, if the array is a formal parameter to the procedure. If the
array is declared as a formal procedugruarent and the size of the highest
(rightmost, or most slowly varying) dimension is unknown, the size of that
dimension should be given ARB (for arbitrary). The declared dimension-
ality of an array passed as a formal parameter to a procedure may be less
than or equal to the actual dimensionality of the affay example, the fol-
lowing example declares several arrays and uses some of theguas ar
ments to functions.
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define SZ DATA 1024
define |1SIZE 100

r eal dat a[ SZ_DATA] # 1-D
integer intarr[I1SIZE |1SIZE] # 2-D
short 3darray][ 10, 20, 30] # 3-D

array, SZ_DATA defined above

call nyfunc (data, intarr, 3darray, 10, 20)

procedure nyfunc (data, intarr, 3darray, i, j)

r eal dat a[ ARB] # Length of array is unknown

i nteger intarr[ARB] # Referenced as 1-D

short 3darray[i,], ARB] # 3-D, dinensions passed as argunents
i nt i, ] # Array dinensions

Example 1.2: Declaring Arrays and Using as Arguments to Functions.

Note that the nt eger arrayi nt arr is declared as two-dimensional
but referenced in the procedure as one-dimensional.sTloet array
3darray is declared as three-dimensional in both the calling and called
procedure. Howevem the called procedure, the last dimension is declared
as ARB, while the others are declared with passepiments. The lower
dimensions must be declared explicitly in order for the function to compute
the index of the elements. It is highly recommended todefd ned
(macro) constants instead of absolute constants to declare array sizes. This
makes maintenance much easier in that the value is declared only once. If
the constant is defined outside of a procedure, then any procedure in the
same file may access the same constant, eliminating the need to pass a
dimension to the functions. In addition, if the constants are defined in an
i ncl ude file they are available to procedures in more than one file.

Functions

External functions, whether supplied by the programmer or part of a
library package must be declared in a manner similar to variables. This
doesnot include intrinsic functions such as n(), abs(), etc. (see
“Intrinsic Functions” on pag&6). Functions may be declared to be any
valid SPP data type. For example, if the program includesah valued
function nameahyf unc, its declaration and invocation might appear as in
Example 1.3.
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real rval, x, vy, z
real myf unc() # Local function
rval = myfunc (x, y, 2)

Example 1.3: Invoking External Functions.

External Functions

The ext er n data type declares a variable as a function. The name of
the function may then be passed as an actual argument in a procedure call.
In the formal procedure (dummy) arguments, the same argument must also
be declared ext er n.

extern tick() # Declare tick() as an external function
begin
# Call axistick using function tick()
call axistick (igs, ..., tick)
# Call axistick using function ticklabel ()
call axistick (igs, ..., ticklabel)
end
procedure axistick (igs, ..., func)

poi nter igs

extern func() # Decl are the passed function external
begin

end

Example 1.4: Declaring and Using the ext er n Data Type.

Common

Global common provides a means for sharing data between separately
compiled procedures. The cormon statement is a declaration, and must be
used only in the declarations section of a procedure. Each procedure refer-
encing the same common must declare that common in the same way.
conmon /identifier/ object [, object [, ... 1]

For example,
conmmon /vfnxtn/ nextn, iraf, os, map



Initialization 15

To avoid the possibility of two procedures declaring the same common
area diferently in separate procedures, toenmondeclaration should be
placed in annclude file (see “Include Files” on pa@®). This permits
considerably more reliable and easy maintenance, avoiding changes in one
procedure without changing another

Initialization

The data Statement

Local variables, arrays, and character strings may be initialized at com-
pile time with thedata statement. Data in a global common nmay be
initialized at compile time. If initialization of data in a global common is
required, it must be done at run time by an initialization procedure. The
syntax of thedata statement is defined identically to the standard Fortran
77 DATAstatement. Some simple examples follow
real X, y[2]
char ch[2]
data  x/0/,y/1.0,2.0/, ch/'a’,’b’,EOS/

Any data statements must follow all declarations. Note that variables
initialized bydata arenot guaranteed to have that value except the first
time the task is executed from the cl. IRAF tasks executed from the cl may
be cached or stored in the process cache. That is, they are not restarted
from the main procedure except the first time they are executed and after
the process cache is flushed (using the clftfsicache ). Therefore, a
variable modified in a task procedure will not have the initialized value the
next time the task is executed, but will have the modified value. It is always
safer to initialize variables with macro symbolic constdeft ine state-
ments or explicit assignment statements.

The string  Statement

Character strings may be declared and initialized withsthiag
statement. This consists of the keywstdng followed by the identi-
fier name, followed by the initialization value enclosed in double quotes.
Not that there is no explicit string sizechar array is implicitly declared
the size of the initialization string.
string errmsg "Could not open input"”
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Macro Definitions

An SPP macio assigns a symbol or identifier to arbitrary text,
implementingstring substitution This enables any piece of code to be
hidden by using its defined symbol rather than the text itself. Upon
precompilation, the macro symbol is replaced by its assigned text. The
primary uses of macros are to defisgmbolic constantssuch as
mathematical constants, whose value will not change at run time,
implementing in-line orstatement functionsand for creatingdata
structues Macro definitions allow hiding certain information and can do
much to enhance the ease of modifying and maintaining a program. By
convention, the names of macros are upper case, to distinguish the names
from variables, functions, and other identifiers and to make it clear that a
macro is being used. Macros are created by usingeheéne command.

If the macro is defined after tipe ocedur e statement, it must be defined
before thebegi n statement, and only that procedure may use it. That is,
its scope is within a single procedure. If a macro is defined before the
pr ocedur e statement, it is available to any procedure in the source file.
Macros that are shared by several procedures should be defined in an
include file, particularly if the source is in fdifent files (see “Include
Files” on page9).

Macros may or may not havegaments. An ayjument is declared in a
macro definition by using a dollar charactgfy &nd a numeral indicating
the agument numberin the macro invocation, gmments are passed in
parentheseq) . Multiple aguments are separated by commas. Macros
without aguments are used primarily to turn explicit constants into
symbolic parameters. Examples are shown throughout this text. Macros
with aguments are used as statement functions and data structure
elements.

Macros incorporating expressions should be enclosed in parentheses to
ensure that the expression is executed with the intended precedence. Macro
definitions may not include string constante&uYmay use thatri ng
statement to declare string constants. All other types of constants, constant
expressions, array and procedure references, are allowed, hoWweeer
domain of definition of a macro extends from the line following the macro,
to the end of the file (except for include files). Macros may be recursive and
may be redefined, resulting in no mention by the compiler

Macro definitions are frequently shared among procedures in several
source files by putting them in amclude file This is another source file,
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but has the extensiorh and is included in any source by using the
include statement (see “Include Files” on p&$). There are many
examples of macro definitions and structures using them in the IRAF
sources, both the system code as well as the applications. Look in the
lib$ andhlib$ directories for the include files for the IRAF system. In
addition, each applications package usually contains one or more header
include files containing numerous examples.

Symbolic Constants

Constants may be declared as variables, initialized with an assignment
statement or by usingdata statement. Alternatelya symbolic constant
may be declared as a macro, usindeé ine statement. Each time the
macro is used in the code, its name is replaced by the text specified in the
def ine statement when the code is compiled. There is no data storage
allocated nor an assignment executed at run time. It becomes easy to
change the values of constants by changing it once idethane state-
ment rather than throughout the code. The meaning of the code frequently
becomes clearer by referring to constants by ndphé¢ (ather than by
value 8.14159 ). There are many constants defined automatically as well
as severainclude files available defining many frequently used con-
stants. See Appendix A for a description of these. The following example
illustrates the use of macros as symbolic constants:

# Use predef ined math constants
include  <math.h>

def ine DATA_SIZE 1024

def ine R_ZERO 0.415

brocedure myproc()

real ref

real data[DATA_SIZE] # Locally def ined constant
char  errtxt[SZ_LINE] # Predef ined constant
begin

# Uses PIl, defined in <math.h>

ref = Pl * R_ZERO

Assign  string, size uses predef ined constant
call strcpy (“End of File”, errtxt, SZ_LINE)

end

Example 1.5: Using Symbolic Constants.
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Data Structures

A data structure allows a set of variables to be treated as a group. These
may include variables of ddrent data types, arrays, strings, pointers, etc.
See “Data Structures” on pafg8 for more details and additional examples.

# Synbol i ¢ const ant
define LINEAR 1

# Define the structure (array)
define | _TYPE $1[1]
define I _NPI X $1[ 2]

define | _COEFF $1[10]

procedure do_coeff (vall, ...)
# DO _CCEFF -- This procedure uses the elenents of the coeff array,
# referencing themby their synbolic nanmes, via nacros defined
# above.
i nt val 1
i nt ot her _val
begi n
if (I _TYPE(coeff) == LINEAR) {
I _NPI X(coeff) = vall
| _COEFF(coeff) = 2
} else {
I _NPI X(coeff) = other_val
| _COEFF(coeff) = 3
}
end

Example 1.6: Using Data Structures.

In this example the macros define a simple structure that permits a dif-
ferent way of using an arrajstead of accessing the array by numeric ele-
ment numbers, it permits a fdifent name to be defined for each array
element that may contain inherentlyfdrent entities. The arragoef f [ ]
is redefined as a simple structure containing the fleldsYPE, | _NPI X,

..., andl _CCOEFF. Defining a structure enhances the readability of a pro-
gram by permitting reference to the fields of the structure by name, rather
than the array elementdef f [ 2] ), and furthermore makes it easier to
modify the structure. The same code could be written without using mac-
ros, referencingoef f as elements of the array or declaring the equivalent
elements as separate variables. Note that parentheses are used to refer to
elements of the structure, as opposed to square brackets, which refer to
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array elements. The equivalent implementation without using macros
would use an array and reference the el ements of the array by their number.
This simple example is straightforward. However, for a complicated exam-
ple, it is usually much clearer to refer to disparate entities by name rather
than by an array element.

procedure do_coeff (vall, )
int vall
int other_val
int coeff[10] #Array to contain a “structure”
begin
if (coeffll]] == 1) {
coeff[2] = vall
coeff[10] =2
} else
coeff[2] = other_val
coeff[10] =2
end

Example 1.7: Implementing Example 1.6 with Array Elements.

The same result may be accomplished by using a common block, asis
shown in the next example.

# Symbolic constant
def ine LINEAR 1
procedure  do_coeff (vall, .r)
real vall
int other_val
int i_type
int i__npix
int i_coeff
common /coeffs/ i_type, i__npix, i_coeff
begin
if (i_type == LINEAR) {
i_npix = vall
i_coeff =2
} else {
i_npix = other_val
i_coeff =3
}
end

Example 1.8: Implementing Example 1.6 with Common Blocks.
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Of course, any other procedure using the variables in the common block
would have to declare it identicallif you do useconmon, put it and the
associated variable declarations inoiude file so there is only one place
the declarations needs to be modified. It is possible to define a structure
containing any data type. The typest , r eal , bool , andpoi nt er are
guaranteed to be the same length, a single word in me®agmmon
method of declaring a structure is to use dynamically allocated memory
referring to the structure elements usingMee{ ] syntax (see “Memory
Allocation — memio” on pagB3). In this case, you need not explicitly
specify a diferent ofset for each data type. For types which majedih
size, howeveryou must be able to refer to the corredseif and size of a
particular structure element. This appliesstbort, | ong, doubl e,
conpl ex, and particularly ta¢har and elements treated as arrays. Note
that these should be aligned long word boundaries?. The convention is
to declare the variables in the order of longest first to shortest last, with
character strings declared last. There are system defined macros for aiding
in the conversion of pointers to these data types:

Macro Convertsto Type
P2X conpl ex

P2D doubl e

P2L | ong

P2S short

pP2C char

Table 1.7: System Macros for Converting Pointers.

The P2T macros permit you to address the netxticture element
without worrying too much about the word size. These are defined in
hl i b$i raf . h since they depend on the host architecture. The following
example declares a structure containing severtrdiit data types and
some constants. The fdifence between this and the previous example is
that the memory containing the structure is allocated dynamically instead
of using a statically allocated arrayhis additionally permits multiple
instances of the structure to be defined. This is the way many packages

2. The size of a long word is machine dependent, but by correctly using structures
in SPP you will avoid these fiifulties.
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handle internal parameters. For example, each time an image is opened
usingi mmap( ), a structure is allocated containing parameters pertaining
to the image. Multiple images may be opened, each having associated
parameters ganized using the same structure.

defi ne LEN MYSTR 128 # Size of structure
define XVAL Menx[ P2X( $1) ] # conpl ex

defi ne DVAL Mermd[ P2D( $1+2) ] # doubl e

define LVAL Mem [ P2L( $1+4) ] # | ong

defi ne RVAL Ment [ ($1+6) ] # real (no P2R)

define | VAL Mem [ ($1+7)] # int (no P2l)

defi ne PVAL Memi [ $1+8) ] # pointer (sanme as int)
defi ne LENARR 10

defi ne | ARRAY Mem [ ($1+8+%$2) ] # 10 element int array

# Offset the next field by the size of the array

defi ne SVAL Mems[ P2S( $1+8+LENARR+1)] # short

define CVAL Menc[ P2C( $1+8+LENARR+2) ] # Single char
define LEN CS 64

defi ne CSVAL Ment[ P2C( $1+8+LENARR+3)] # Character string

# The next field nust be offset by the size of the string

Example 1.9: Structure Elements Defined in nyi ncl . h.

Note that even though tHR2T macros take care of thefsdts into the
Meni ] arrays, you still need to keep in mind the size of each structure ele-
ment to find the déet to the next one. ThuBYAL is offset by two from
XVAL since aconpl ex is two words. Howevemdjacent fields have con-
secutive dkets $1, $1+1, ...) if they occupy a single word. Note also the
use of a second gument inl ARRAY to specify the array element, the
position within the chunk of the allocated memofhe above structure
definition would be used by first allocating memory for the structure and
accessing each field using the returned structure poiamseshown in
Example 1.10.
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include myincl.h

complex xconst
double dconst
real rconst
pointer  mstr
int i

begin
# Allocate memory for the structure
call malloc (mstr, LEN_MYSTR, TY_STRUCT)

# Initialize the structure values
XVAL(mstr) = xconst
RVAL(mstr) = rconst
do i =1, LENARR

# Array elements
IARRAY (mstr,i) = ..

# Character  string
call strcopy (“Hello World”, CSVAL(mstr), 11)

Example 1.10: Allocating and Using Structures by Pointer.

Another way to define arrays or character strings in a macro structure is
to store only a pointer to dynamically allocated memory in a field of the
structure. In this case, the memory for the array has to be allocated explic-
itly in the code in addition to the memory for the structure.
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def ine LEN_MYSTR2 # Size of the structure
def ine R_ARR_P Memi[($1)] # Pointer to a real array
def ine  R_ARRAY Memr[R_ARR_P($1)] # The array
def ine  CH_STR_P Memi[($1+1)] # Pointer to a char string
def ine CH_STR Memc[CH_STR_P($1)] # The string
# The structure would be used as follows
def ine SZ RARR 1024
pointer  mstr

# Allocate memory for the structure

# Note the use of TY_STRUCTfor the data

type

call malloc (mstr, LEN_MYSTR, TY_STRUCTY)
# Allocate memory for the
# real array in the structure
call malloc (R_ARR_P(mstr), SZ_RARR, TY_REAL)
# Fill  in the array (with the constant 100)
call amovkr (100.0, R_ARRAY(mstr), SZ RARR)
# Allocate memory for the
# chracter  string in the structure
call malloc (CH_STR_P, SZ LINE, TY_CHAR)
# Initialize the string
World”, CH_STR(mstr), SZ_LINE)

call strcpy (“Hello

Example 1.11: Defining Arrays in a Structure with Dynamically Allocated
Memory..

Macro Functions

Macros with aguments may also be used to define in-line functions. For
example, here are a couple of definitions of character classes from the sys-
tem includdib$ctype.h

def ine IS _UPPER ($1>='A’'&&$1<=2") -«——— Character Functions from
def ine  IS_LOWER ($1>='a'&&$1<="2)) lib$ctype.h

def ine IS _DIGIT ($1>="0'&&$1<="9’)

def ine  RADIAN 57.295779513082320877 -«—— Math Functions from

def ine  RADTODEG (($1)*RADIAN) hlib$math.h

def ine  DEGTORAD (($1)/RADIAN)

Example 1.12: Macro Definitions.
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These are used in the following:

i ncl ude <char. h>
i ncl ude <math. h>
procedure myproc
char string[ SZ_LI NE]

real deg_ang
r eal rad_ang
begi n

# Check if character is a digit
if (1S DAT(string[i])) {

}

# Convert degrees to radi ans
deg_ang = DEGTORAD(r ad_ang)

end

Example 1.13: Using Macro Functions.

Control Flow

SPP provides a full set of control flow constructs found in most modern
languages such as conditional execution and repetition. Some of these have
already appeared in examples. An SPP control flow construct executes a
statement either conditionally or repetitivelyrhe statement to be executed
may be a simple one line statementoapound statement enclosed in
curly brackets or braces, or thell statement (; on a line by itself). An
assortment of repetitive constructs are provided for convenience. The sim-
plest constructs amhi | e, which tests at the top of the loop, arepeat
unt i |, which tests at the bottom. THe construct is convenient for sim-
ple sequential operations on arrays. The most general repetitive construct is
thef or statement.

* Conditional Constructs
- if
- if.else
- switch
- case
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* Repetitive constructs

- do

- for

- repeat..until
- while

» Branching

- break

- next

- goto

- return

Two statements are provided to interrupt the flow of control through one
of the repetitive constructs. The eak statement causes an immediate
exit from the loop, by jumping to the statement following the loop. The
next statement shifts control to the next iteration of a loopr Hak and
next are embedded in a conditional construct which is in turn embedded
in a repetitive construct, it is the outer repetitive construct which will deter-
mine the point to which control is shifted. Note that formatting in the form
of indentation and white space is not mandatowy makes the code more
readable and therefore easier to maintain.

if...else

Thei f andi f el se constructs are shown beloWheexpr part may
be any boolean expression (see “Expressions” on Bgd hestatement
part may be a simple statement, compound statement enclosed in braces, or
the null statement. The statement(s) will be executed if the expression
resolves td r ue. Otherwise, it will fall through to the next block consist-
ing of anel se orel se if.
if (expr)
statement
[el se if (expr)
statement]
[el se (expr)
statement]
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The control flow constructs may be nested indefiniiehere may be an
i f clause without ael se orel se if. Thereisnand if. A simple
exampleofanf ... else ... else if is:

if (counter >= MAX) {
X = sqgrt (a)
call xpoc (x, vy, z
} else if (counter < MN) {

}

Example 1.14: Usingi f . . el se.

switch...case

Thesw tch case construct evaluates an integer expression once,
then branches to the matching case. Each case must be a unique integer
constant. The maximum number of cases is limited only by table space
within the compiler A case may consist of a single integer constant, or a
list of integer constants, separated by commas and terminated by the colon
character. The special casdef aul t, if included, is selected if the
switch value does not match any of the other cases. If the switch value does
not match any case, and there is no default case, control passes to the state-
ment following the body of thewi t ch statement. Irevery case, control
passes to the statement following the switctbrAeak statement is not
needed after each case (in contrast testhiet ch ... case statement
in C). Each case of them t ch statement may consist of an arbitrary num-
ber of statements, which do not have to be enclosed in braces. The body of
the swi t ch statement, howevemust be enclosed in braces as shown
below



switch ( expr) {

case list:
statenents
[case |ist:
st at ement s]
[ default:
st at ement s]
}
For example:
switch  (operator) {
case '+’
c=a+b
case -
c=a-b
default:

call error (1, "unknown operator")
#or
switch (key) {
case’'a’, 'A’:

case’'b’, 'B":

}

Example 1.15: Using switch and case .

Control Flow
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Theswitch construct will execute mostfediently if the cases form a

monotonically increasing sequence withougéagaps between the cases
(.e.,case 1 ,case 2 ,case 3 , etc.). Ideally the cases should be
defined parameters or character constants, rather than explicit numbers.

while

The while statement repetitively executes a statement or a block of

statements as long as the specified condition expresgiae.ighe condi-

tion is tested at thieeginning of the loop, so it is possible for the statement

not to be executed at all.

while ( expr)
st at enent
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repeat...until

The repeat construct repetitively executes a statement or a block of
statements. The simpler form simply repeats forever. The statement block
might include abreak statement to terminate the loop.

The repeat...until form executes the statement as long as the
logical expression in theuntil  statement is false. The condition is tested
at the end of the loop, so the statement will always be executed at least
once.

repeat repeat
st at enent st at enent
until ( expr)

for

The for construct consists of an initialization part, a test part, a loop
control part, and a statement to be executed. The initialization part consists
of a statement which is executed once before entering the loop. The test
part is a boolean expression, which is tested before each iteration of the
loop. The loop control statement is executed after the last statement in the
body of the for , before branching to the test at the beginning of the loop.
When used in afor statement, next causes a branch to the loop control
statement. Thefor construct isvery general, because of the lack of restric-
tions on the type of initialization and loop control statements chosen. Any
or al of the three parts of the for may be omitted, but the semicolon
delimiters must be present. Only one statement is permitted for each con-
trol section, unlike C.
for( init; test; control)

st at enent

For example:

for (ip=strlen(str); ip > 0 && str(ip] '="2"; ip=ip-1)

Example 1.16: Using for .

Thisfor statement searchesthe string str  backwards until the charac-
ter 'z’ isencountered, or until the beginning of the string is reached. Note
the use of the null statement (; ) in the body of the for , since everything
has already been done in the for itself. The strlen  procedure is shown
in alater example. Note that the above example may result in an error if the
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string is null, in which casip =0 and the tesstr[ip] |= "2’ will
try and access a character before the beginning of the string.

do

Thedo construct is a special case of fbe construct. It is ideal for
simple array operations, and since it is implemented with the Fdt@an
statement, its use should result in particularicieint code.

do lcp =initial, final [, step]
st at enent

General expressions are permitted as loop control iddhestatement
but their result must be integers. The loop may run forward or backward,
with any step size. Note that to operate backward, the step must be nega-
tive, and the initial value should bedar than the final value. The body of
thedo will not be executed if the initial value of the loop control parameter
satisfies the termination condition. For example:

doi=1, NPIX
ali] = abs (ali])

Example 1.17: Using do.

break

Thebreak statement causes an immediate exit from a loop by jumping
to the statement following the loop.

next

Thenext statement immediately shifts control to the next iteration of a
loop.
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return

Ther et ur n statement assigns a value to a function or returns control
to the calling procedure. This value is passed back to the calling procedure
as the function value. The returned value is an expression which resolves to
the declared data type of the function. For example:

real function func (i, Xx)

r eal i

r eal X

r eal retval

begin
retval =i * x
return retval

end

Example 1.18: Using the r et ur n Statement.

goto

Thegot o statement unconditionally branches to another point in a pro-
cedure. The tget statement is specified by a label, which is an integer con-
stant on the beginning of a line, preceding an executable (unnumbered)
statement. For example:

call smark (sp)
Qoto 10

10
call sfree (sp)

Example 1.19: Using the got o Statement.
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Alternately the label may be assigned a symbolic value using the
def i ne statement. This permits more mnemonic labels.

define terni n_ 10
begi n
call smark (sp)

goto term n_

term n_'
call sfree (sp)

Example 1.20: Using Symbolic Values with got o Statements.

The underscore at the end of the laketr(mi n_ in the example
above) is not required. but is a recommended convention to permit the
labels to stand out as distinct from other identifiers.

Expressions

An expression may be a numeric constant, a string constant, an array
reference, a call to a typed (function) procedure, or any combination of the
above elements, in combination with one or more unary or binary opera-
tors. Every expression is characterized by a data type and a value. The data
type is fixed at compile time, but the value may be either fixed at compile
time, or calculated at run time. Parentheses may be used to force the com-
piler to evaluate the parts of an expression in a certain. dndée absence
of parenthesis, thagrecedence of an operator determines the order of evalu-
ation of an expression. The highest precedence operators are evaluated
first. The precedence of the SPP operators is defined by the order in which
the operators appear in the table under heading “DgiasT on pageé.
Procedure call has the highest precedence. Dueremt list in a procedure
or array reference consists of a list of general expressions separated by
commas. If an expression contains calls to two or more procedures, the
order in which the procedures are evaluated is undefined.
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Operators

SPP supports the usual arithmetic operators which take operands of any
numeric data type. In addition there are the usual comparison operators
which take operands of any data type with the data type of the result always
boolean. Finallythere are boolean operators taking boolean operands and
also resulting in a boolean.

Operator Operands Result Operation

+ Numeric Numeric Add

- Numeric Numeric Subtract, negate

* Numeric Numeric Multiply

/ Numeric Numeric Divide

** Numeric Numeric Power

< Numeric Boolean Less than

<= Numeric Boolean Less than or equal to
> Numeric Boolean Greater than

>= Numeric Boolean Greater than or equal to
== Numeric Boolean Equal to

I= Numeric Boolean Not equal to

! Boolean Boolean Not

[ ] Boolean Boolean Or

&& Boolean Boolean And

| Reserved operator

& Reserved operator

Table 1.8: Arithmetic and Boolean Operators.

Minus ) may be a binary operator (have tw@uamnents) or unary
operator (have one gument) operatolAs a binary operator it represents
subtraction and as a unary operator it represents negation. The boolean not
(1) is always a unary operator
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Mixed Mode Expressions

Binary operators combine two expressions into a single expression. If
the two input expressions are offdient data types, the expression is said
to be amixed mode expression. The data type of a mixed mode expression
is defined by the order in which the types of the two input expressions
appear in the table under “DatgpEs” on pag®&. The data types are listed
in the table in order of increasing precedence. Thus, the data type which
appears furthest down in this table will be the data type of the combined
expression. For example, amt plus ar eal produces a eal . Mixed
mode expressions involvirigpol are illegal. Whilechar expressions are
permitted, there are no string operators or expressions since there is no fun-
damental string data type.

Type Coercion

Type coercion refers to the conversion of an object from one data type
to another Such conversions may involve loss of information, and hence
are not always reversibleyfe coercion occurs automatically in mixed
mode expressions, and in assignment statemeyyis. cbercion is not per-
mitted between booleans and the other data types.

Data Type Contains

ai mag Imaginary part otonpl ex
conpl ex Complex

doubl e Double precision floating point
i nt Integer

real Single precision floating point

Table 1.9: Data Type Precedence.

The data type of an expression may be coerced by a call to an intrinsic
function. The names of these intrinsic functions are the same as the names
of the data types. Thug, nt ( x) , wherex is of typer eal , coercex to
typei nt , whiledoubl e( x) produces a double precision result
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The Assignment Statement

Theassignment statement assigns the value of the general expression on
the right side to the variable or array element given on the left side. Auto-
matic type coercion will occur during the assignment if necessary (and
legal). Multiple assignments may not be made in a single assignment state-
ment. That is, an assignment statement may have only one equal sign.
However a line may contain more than one statement, separated by semi-
colons (; ).

grt (x[i]**2 + y[i]**2)
;o x2 =1.0

Example 1.21: Assignment Expressions.

Procedures

Procedures are the basic units of SPP programs. They also include func-
tions, procedures that return a value. The form pf acedur e declara-
tion is shown below

[data_type] procedure proc_nanme ([pl [, p2 [,..-. 111)
[decl arations for procedure argumnents]
[decl arations for |ocal variables]
[decl arations for functions]
[initialization]
begi n
[ execut abl e st at enment s]
end

The data_type field must be included if the procedure returns a value.
The begi n keyword separates the declarations section from the execut-
able body of the procedure, and is required. 8iné keyword must follow
the last executable statement. Note thapthecedur e statement and the
declaration statementsust begin in the first character on the line.

All parameters, variables, and typed procedures must be declared. The
SPP language does not permit implicit typing of parameters, variables, or
procedures, unlike Fortran. By convention, declarations of procedjue ar
ments precede local declarations. It is also good practice to use in-line
comments to describe the declarations.

If a procedure has formal parameters, they should agree in both number
and type in the procedure declaration and when the procedure is called. In
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particular, beware of short or char parameters in argument lists. An
i nt may be passed as a parameter to a procedure expecting ashort inte-
ger on some machines, but this usage is not portable, and is not detected by
the compiler. The compiler does not verify that a procedure is declared and
used consistently.

If a procedure returns a value it is known as a function and the calling
program must declare the procedure in a type declaration, and must refer-
ence the procedure in an expression. The function procedure must contain a
r et ur n which assigns the value to pass back to the caller as the function
value. A function procedure may return a numerical value, but may not
return an array or string.

If a procedure does not return a value, the calling program may refer-
encethe procedureonlyinacal | statement. However, ther et ur n state-
ment may be used to end the procedure at any point and return control to
the calling procedure.

begin...end

The executable statements in a procedure must be surrounded by
begi n and end statements. All declarations must be placed between the
pr ocedur e statement and the begi n.

{..}
Braces ({ and } ) may be used to bracket explicitly groups of statements

intended to be treated as a single statement, for example, ini f, f or, or
whi | e constructs.

Arguments

Formal or dummy arguments and actual arguments must match in num-
ber and type. That is, the declarations in the calling and called procedure
must be the same for all of the arguments.
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ent ry Statement

Procedures with multiple entry points are permitted in SPP because they
provide an alternative to global common when several procedures must
access the same data. The multiple entry point mechanism is similar to
block structuring. The multiple entry point construct is only useful for
small problems. If the problem grows toodey an enormous procedure
with many entry points may result, which isfdilt to maintain. The form
of a procedure with multiple entry points is shown belBwther all entry
points should be untyped, as in the example, or all entry points should
return values of the same type. Control should only flow forward. Each
entry point should be terminated by at ur n statement, or by got o to
a common section of code which all entry points share. The shared section
of code should be terminated by a singét ur n which all entry points
share.

procedure push (datum

I nt dat um # val ue to be pushed or popped
i nt stack[ SZ_STACK] # the stack

int sp # the stack pointer

dat a sp/ 0/

begin

# Push datum on the stack, check for overflow

return

entry pop (datum
# Pop stack into "datuni, check for underfl ow

return

end

Example 1.22: Using the ent r y Statement.

Intrinsic Functions

Any function written as part of the task must be declared. HowsSA&t
includes several intrinsic functions that need not be declared. The intrinsic
functions are generic functions, meaning that the same function name may
be used regardless of the data type of theraents. The guments to trig-
onometric functions are assumed to be in radians, as in Fortran.
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Function Description

abs(a) Absolute value |x|

acos(a) Arccosing, returns angle in radians costa
asin(a) Arcsing, returns angle in radians sin't a
at an(a) Arctangent, returns angle in radians tanla
atan2(a, b) Arctangent, returns angle in radianstan™ a
char (a) Convert to character

compl ex(a, b) Complex from real and imaginary parts
conj g(a) Complex conjugate

cos(a) Cosine, argument in radians

cosh(a) Hyperbolic cosine, argument in radians
doubl e( a) Convert to double precision

exp(a) Exponential €?

int(a) Convert to integer, truncate

l og(a) Natural logarithm

| 0g10(a) Common logarithm

I ong(a) Convert to long integer

max(a, b) Maximm

mn(a, b) Minimum

nmod(a, b) Modulus or remainder a — [a/b]
nint(a) Nearest integer

real (a) Convert to single precision

short (a) Convert to short integer

sin(a) Sine, argument in radians

si nh(a) Hyperbolic sine, argument in radians
sqrt(a) Square root

tan(a) Tangent, argument in radians

tanh(a) Hyperbolic tangent, argument in radians

Table 1.10: Intrinsic Functions

37
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Note that the names of the type coercion functiartsaf, short,
i nt,real, etc.) are the same as the names of the data types in declaration
statements. The functioh®©gl10, t an, and the hyperbolic functions may
not be called with complex guments. As in Fortran, thegarments to trig-
onometric functions must be in radians.

Calling Fortran Subprograms

Since SPP is preprocessed into Fortran, in most cases, it is quite
straightforward to call an existing Fortran subroutine from an SPP proce-
dure. The most important caution is in using character strings. SPP strings
are not the same as Fortran strings. SPP strings are implemented as arrays
of integers. Howevethere are procedures available to transform between
the two:f 77pak() converts an SPP string to a Fortran string, and
f 77upk() converts a Fortran string to an SPP string. Note that you must
declare the Fortran string in the SPP procedure with a Fortan statement.
This is possible with th&escape as the first character on a line. This indi-
cates to the xc compiler that the following statement should not be pro-
cessed but copied directly to the Fortran code. See also “Expressions” on
page31l and “Fortran Strings” on pade>s.

Program Structure

An SPP source file may contain any numbeprodcedur e declara-
tions, zero or oneask statements, any numberadf i ne ori ncl ude
statements, and any numbethefl p text segments. By convention, global
definitions and include file references should appear at the beginning of the
file, followed by the task statement, if amyd the procedure declarations.
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i ncl ude <stype. h>
i ncl ude "wi dgets. h"
include "../nore. h"

define MAX W DCETS

define NPI X

define LONG TUDE

t ask al pha, beta
# ALPHA - -

# This file contains the source for the tasks naking up the
# Wdgets anal ysis package (describe the contents of the file

(describe the al pha task)

# Character type definitions
# Package definitions file
# In the parent directory

50 # Local definitions
512
7:32:23.42

epsi | on=eps

procedure al pha()

Example 1.23: Program Structure.

Include Files

Include files permit an external file to be inserted into SPP code. They
are referenced at the beginning of a file to include global definitions that
must be shared among separately compiled files, and within procedures to
reference common block definitionsv@ forms allow for system-defined
includes or usedefined includes. Thencl ude statement is &ctively
replaced by the contents of the named file. Includes may be nested at least
five deep. The most common uses for include files are macro definitions
and structure declarations to be shared by several source files comprising a
task. The name of the file to be included must be delimited by either angle
brackets €file>) or quotation marks'file" ). The first form is used to ref-
erence the IRAF system include files. This inclugldernal packagesuch
as STSDAS if these are installed. The second, more general, form may be
used to include any file. The file name may include an absolute or relative
directory path. Howevethe safest and most portable method of accessing
include files in SPP source is to have the source and include files in the
same directoryYou then need only refer to the file itself in thecl ude
statement without any absolute or relative directory information.

i ncl ude <i mhdr. h>
i ncl ude "nmytask. h"
include "../nore.h"

# I nclude i mage header system definitions
# Application task definitions
# In the directory above

Example 1.24: Using Include Files.
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Help Text

Documentation may be embedded in an SPP source file either by com-
menting out the lines of text using thecharacter or by enclosing the lines
of text within.help and.endhelp  directives. If there are only a few
lines of text, it is probably most convenient to comment them ougelLar
blocks of text should be enclosed by the help directives, making the text
easier to edit, and accessible to the on-line documentation and text process-
ing tools.

# Everything from the '# to the end of line is a comment
.help  [keyword [qualifier [package description]]]
hel p text

.endhelp

Figure 1.3: Commenting out Documentation Blocks.

The preprocessor ignores comments, and everything betiveln
and.endhelp directives. The directives must occur at the beginning of a
line to be recognized. In both cases, the preprocessor ignores the remainder
of the line. The gguments tahelp are used by theelp cl utility, but
are ignored by SPPelp text may be typed in as it is to appear on the ter-
minal or printey or it may contain text processing directives. See the cl
Iroff  documentation for a description of the IRAF text processing direc-
tives. Manual pages (help text) for tasks may be stored either directly in the
source file as help text segments, or in separate files. If separate source and
help files are used, both files conventionally have the same root name, and
the help text file should have the extensidp

The task Statement

Thetask statement is used to make an IRAF task. A file need not con-
tain a task statement, and may not contain more than a single task state-
ment. Files without task statements are separately compiled to produce
object modules, which may subsequently be linked together to make a task,
or which may be installed in a libramxn executable program requires a
task statement, although it may be in a file by itself. This is then linked
with the other procedures making up the task.

task Itaskl, ltask2, Itask3=proc3

If the task name is identical to the main procedure of the task, then only
the task name needs to be inthsk statement. The main procedure may
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have a diferent name, howeveln this case, the procedure name must be
specified in the ask statement with an assignment.

task doit =t _doit

rocedure t_doit ()
egin

end

Example 1.25: The t ask statement.

Generic Preprocessor

There are many cases in which the same algorithm may need to be
implemented for several @iErent data types. Thgeneric preprocessor, in
addition to SPP converts a generic procedure into a set of procedures spe-
cific to particular data types. &mention this briefly here and refer to a
more detailed discussion in “Generic Preprocessor” on paganchel p
generi c in the IRAF cl, which describe all of the preprocessor directives
and the command used to process generic code. Many useful examples of
generic procedures exist in IRAPBarticularly in thevops package, a
library of generic procedures dealing with vector operations implemented
for the SPP data types. Seeettr (Array) Operators — vops” on
pagel03 for a description of this package hdicate the flavor of this
facility, here is an example of generic code fromvibyes package:

# AABS -- Conpute the absolute value of a vector (generic).
procedure aabs$t (a, b, npix)

Pl XEL a[ ARB], b[ ARB]

int npix, i
begin
doi =1, npix
b[i] = abs(a[i])
end

Example 1.26: Generic Code from VOPS Package.

The generic preprocessor will replace fte sufix on the procedure
name by the single character initial of the data tgpe (etc.). The prepro-
cessor directiv®l XEL is replaced by the appropriate data type declaration
(short,int, etc.).






CHAPTER 2:

Libraries and Packages:
The VOS Interface

-I-he IRAF Mrtual Operating System (VOS) comprises several

libraries of procedures that provide the interface to IRgd¥mitting an
SPP application to access images, cl parameters and so forth. It provides an
environment for developing scientific analysis applications. The libraries
described here are available to any SPP application without explicitly
including the library when linking. Other libraries exist that may be
included. In addition, an applications package may create its own library

Several VOS packages have associated include files which may be used
for predefined constants, structures, and other macros. These may be
included in code with thefile> syntax (see “Include Files” on pag8).
Note that here the terpackagerefers to a set of procedures in a library
not a set of applications tasks available in the IRAF cl.

The VOS procedures are grouped into library packages of related
procedures. Most of them deal with input and output of various forms.

clio - Interaction with the cl

* memio - Dynamic memory allocation

* imio - Image access

+ fmtio - Formatted I/O

» fio - Basic file I/0

* vops - Vector (array) operations
e gio - Vector graphics

o tty - Terminal 1/0

* osb - Bit and byte operations

43
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* plio - Pixel lists
e mwcs - World coordinate system
* efc - Miscellaneous

The procedures described here represent the normal interface between
an SPP program and the IRAF environment. That is, they arenthe
procedures that should be called. While additional, ldexszl, procedures
exist in the library these should not be used. The top-level interface is
intended to be stable and well documented. The remainder of the library
cannot be guaranteed to remain free of modifications such as changes to the
calling sequence. Using lower level procedures in portable, maintainable
code represents anterface violation and causes potential maintenance
problems.

This chapter describes many of the VOS package library procedures.
While every attempt has been made to provide comprehensive and
up-to-date information on the VOS packages, there are quite a few libraries
and the number of individual procedures is quitgdarAn exhaustive
description of each procedure and its calling sequence is beyond the scope
of this reference. In particulat is not practical to describe each procedure
in extensive detail. Nor is there room to fully describe every calling
argument to every procedure. Howevier many cases it should be clear
what the data type and meaning are for most of them. In many cases, they
are discussed in the text. Examples are used throughout to demonstrate the
most commonly used procedures. ldeatlyere would be a complete
document for every library package describing each procedure and its
calling aguments in detail. An example @o with a quite complete
reference. Howevenot every package has such complete documentation.

There is usually a table describing the important procedures in a given
library package. If there is a variable and equals sign then the procedure is
a function. If there is no variable assignment, the procedure is invoked by a
cal | statement. It should be fairly clear what is the data type of the
function by the variable name. In many cases, a given procedure is
implemented separately for severafeliént SPP data types. That is, there
is a separate procedure for each data type. In that case, there is usually a
single entry in the table for that family of procedures with théixstif
indicating to specify the data type with the initial of the data type name.

You should refer to the source code for the definitive description of any
procedure. The best sources for such information is in the IRAF system
itself. Each package resides in a separate directory below the IR&F
directory with the same name as the package. This directory contains the
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source code for the package library procedures. In addition, there is usually
a doc directory below this source directorgontaining help files or
additional documentation. For example, the direcéyrg$i m o contains

the source and additional documentation forithi@ library. Note also that

the IRAF cl defines an environment variable for each library with the same
name,j m o orf nt i o, for example. Therefore, the source tarap() is

ini m o$i mmap. x. Itis quite instructive to look at the source files as well
as the associated documentation. Note howetlet these source
directories contaimll of the library procedures. This includes lower level
code, not intended to be called by SPP applications tasks, but by the library
procedures themselves.

2.1

Interaction with the cl — clio

The clio package allows an application to interact with the IRAF
command language (cl). This includes mostly reading and writing cl
parameters. In addition, there is a set of procedures for haffitkingme
templateslists of input files, as well as satisfying interactive graphics input
(cursor position). Parameters in the cl may have a data type attribute as SPP
parameters are typed. The SPP data type need not match the cl pasameter
data type, howeveihe data type is silently converted &dyo. The typed
procedures returning cl parameter values refer to the data type of the SPP
variables accepting the value of the cl parameter

Ordinary Parameters

There is a separate read (get) and write (put) procedure for each SPP
data type. All of the get procedurescept stringsare functions, returning
the value of the cl parameter as the function value. Each function takes a
single agument of typehar , the cl parameter name. When the function is
called, the cl will attempt to resolve the value of the parameter from a
default in a parameter file or prompt for input from the standard input
streamSTDI N (see “Formatted 1/0 — fmtio” on pa@®). If the program
is not connected to the cl (i.e., if it is run stand-alone), a prompt will be
written toSTDOUT and the value of the parameter is read f&Irdl N. In
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the case of string parameters, there is a get and put procedure, returning the
string value in a calling gument.

Function Call Purpose

value = clgetT (parnane) Get the value of a cl parameter
clgstr (parnane, string, maxch) Get a cl string parameter

value = clputT (parname, val ue) Put the value of a cl parameter
clpstr (parnane, string) Put a cl string parameter
clgwd (parnanme, keyword, maxchar, Get an enumerated string

di ctionary)

Table 2.1: Parameter I/O Functions.

The procedures to read and write numeric parameters are implemented
for each SPP data typebool, char, short, int, |[ong,
real, double, and conpl ex. Use the appropriate procedure by
replacingT with the first letter of the corresponding data typéget r ()
for typer eal or cl geti () for typei nt eger, for example. Note that
the data type of the returned value need not match the pararze
type. Implicit type conversion is done blyo.

The parnanme parameter is a char variable containing the
parameter name. This may be a literal string, a predefined string parameter
constant, or a character variable containing the desired string (which may
also have been read wittl gstr()). In the case otl gstr (), the
additional parametaraxch specifies the size of the string paramelée
following example illustrateslio by reading several parameters from the
cl.
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task readcl
procedure readcl ()
int ival # An integer
short sval # A short integer
real rval # A real
char strval[SZ_LINE] # A string of size SZ LINE
# (a predef ined constant)

int clgeti(g
real clgetr
short clgets()
string ipar intpar" # The cl parameter name of an integer
string  spar “shortpar" # The cl parameter name of a short
string rpar ‘"realpar” # The cl parameter name of a real
begin

# Use clget functions  for numeric parameters

# String  variables  contain the parameter names

ival = clgeti ipar) # Get an int

rval = clgetr rpar) # Get a real

sval = clgets spar) # Get a short

# Get the string

q call clgstr  ("strpar", strval, SZ_LINE)

en

Example 2.1: Reading Parameters From the cl.

Note the literal string constants for the parameter names and the
predefined constar8Z LINE specifying the size of the returned string.
Also, note the distintion between the variable assigned a value in the code
and the parameter as defined in the cl. There #had data type in the
cl, only integers. The proceducgets() reads a cl parameter of any
data type into a short variable. The cl paramgtertpar is declared as
an integer but the variab$wval is declaredghort

Such a procedure implemented as part of a task maypasaraeter file
to specify attributes of parameters. This is a text file with a root name the
same as the task name and an extenp@mn . The above example defines
a taskreadcl whose parameter file would be calleshdcl.par
containing the lines shown in. See “Parameter Files” on pagdor a

more detailed description gsar files.
# Parameter file for task readcl
intpar,i,a,0,1,20,"Integer parameter”
realpar,r,a,-1.2,-10.9,99.8,"Floating point parameter"”
strpar,s,a,"hello",,,"String parameter”
# There arent really shorts in the cl, only integers
shortpar,i,a,1,,,"Short parameter"

Example 2.2: Parameter File.
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The cl gw d() procedure returns the value of emumerated string
parameterThis is a string parameter whose value may take on one of a list
of possible values. The list of possibilities is specified in the parameter file
in the minimum value field as a quoted string with values delimited by a
vertical bar For example the parameter color might permit the selection of
several possible values. The definition in the parameter file might be:

color, s, h,"bl ack”, "| bl ack| whi te| red| green| blue|",, "col or"

The cl uses minimum matching to determine the desired value from the
smallest unique initial characters the user specifies for the stoogn¥st
specify thedictionary or the list of possible values td gw d() in the
di cti onary amgument returns the full word in ttkeeywor d agument.

One pitfall is the potential mismatch between the enumeration string in
the parameter file and the dictionary in the source. How@\vsrpossible
to read the enumeration string usglggst r () since it is possible to read
the individual components of the parameter definition in addition to its
value. The following would return the dictionary for thel or parameter
as defined above:

call clgstr ("color.p_mn", colordict, SZ LINE)

Wherecol or di ct is a string variable and would be used in thg-c
wrd() call:

call clgwd ("color"”, color SZ LINE, colordict,)

pset parameters

Any cl parameter may be included inpaet. A psetis a set of cl
parameters referred to as a group via a single parameter of a task. The pset
itself is defined as a task in the cl and is defined byaa file. In the SPP
code, howevermpset parameters are accessed identically to any other task
parameterWhile youmay prepend the pset name to the parameter name,
this is not necessary and not recommended.

List Structured Parameters

List structured or list-directed parameters permit a number of values to
be accessed by an application from a file specified by name. The following
procedures get list structured parameters from the cl. The first two return a
status value which iIEOF on reading at the end of file on the input. The
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cl gl pt() procedures return the value of the appropriate data type as the
function value.

Procedure Call Purpose

status = clgl pT (param val ue) Get a numeric parameter

len = clglstr (param outstr, maxch) Geta string parameter

Table 2.2: List-Structured Parameter Functions.

The procedure represented It gl pT() reads a numeric list
structured parameter and is implemented for the usual SPP data types:
bool , char, short, int, | ong, real, doubl e, andconpl ex. It
returns the value as the second procedugeinaent, whose data type
should match the procedure. The function return value is an integer status
that takes the valuBCOF upon reading after the last parameter in the list.
The other procedure|l gl st r () returns the length of the string read as
thei nt function value, oEOF after reading the last string. For example,
we may wish to read integer values from a list filenamie_fi | e. t xt
which contains the following:

1
22

333
4444
55555
666666

If we add the following statements to the prograsadcl| in the
previous section:

While (clglpi ("intval", ival) !'= EOF) {
call printf ("integer value: %l\n")
call pargi (ival)

then the parameter file should have the following line:

intval,*i,a,"int _ file.txt",,,"> List of integer elenents"



50 Chapter 2: Libraries and Packages: The VOS Interface

Notice the additional flexibility to input data to a program; changing the
input list filename gives you another set of values.

Vector Parameters

It is possible to access a group of parameter values using a single root
parameter name. This provides the capability of vectors or arrays in cl
parameters. The array structure, default values, ranges, etc. may be
specified in the par file as with scalar parameters. Howeube syntax
is slightly different. For example, the following declares a singly
dimensioned real array having three elements.

vecreal ,ar,a,1,3,1,,,"real vector elements", 0.0,1.2,3

Note that the charactex precedes the data type field, the next three
fields specify the dimensionaljtgize, and starting index, and the default
values arafter the prompt string. The following code (Exam@l8&) will
read the above values.

r eal arr[ 3]
arr[1] = clgetr("vecreal [1]")
arr[2] = clgetr("vecreal [2]")
arr[3] = clgetr("vecreal [3]")

Example 2.3: Reading Vector Parameters.

Note that the element number of the cl parameter vector is enclosed in
square brackets following the parameter name and is part of the string
passed to thel get T() andcl put T() procedures.
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Interactive Graphics Cursor

The cl treats an interactive graphics input cursor read similarly to a list
structured cl parameter queMvhen the user asks for a cursor position,
either through a cl query or through a task, the cl issues a prompt which the
user must satisfy with some action. In the case of a normal cl paratineter
user may type in the value of the paramdter a cursor read (assuming a
graphics terminal with cursor capability) the graphics ermjeshics input
(GIN) mode. The user may then move the cursor on the screen. T
terminate graphics mode, the user types a key on the keyboard. This
satisfies the query prompt and the cl returns the cursor position. The
cl gcur () procedure returns the next cursor value from a list structured
cursor type parametefhe format of a cursor value is as follows:

X y wes key sval

where
* X, Y- are the<andy cursor coordinates

* Wcs - is the world coordinate system in which cursor coordinates are
given

» key - is the key (stroke) value associated with cursor read
» sval - is an optional string associated with the given key

All of the fields need not be given, and extra fields may be supplied and
will be either ignored or returned sval. Thex y, andwcs fields may be
omitted, in which case the inputksy sval, causingl NDEF | NDEF O
key sval to be returned, exactly as if th&lDEF | NDEF O had been typed
in. The number of fields read is returned as the function v&8UOE;is
returned when the end of the cursor list is reached. Since the cl treats a
cursor query as a parameténe clio procedurecl gcur () is used to
perform interactive graphics input from an SPP task. Its calling sequence
is:

call clgcur (param wx, wy, wcs, key, strval, naxch)
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Field Types and Names Contents

char param cl parameter name

real wx, wy World coordinates of cursor

int WCS Index of WCS at cursor position

int key Keystroke value used to return cursor
char strval [maxch] String command ikey = ‘'

int maxch Size ofstrval

Table 2.3: Graphics Cursor Parameters.

Note that the gumentkey is anint typed variable, nothar as
might be expected.

There are two flavors of cursor available through the cl: for vector
graphics and image displaihe cl data type of a cursor parameter may be
either*gcur  for a graphics cursor parameter*oncur for an image
display cursor parameter

See “\éctor Graphics — gio” on padéd4 for a brief description of the
graphics procedures. See tjie reference manualGfaphics 1/0 Design
[Tody84b]) for a more complete description of cursor interaction.

cl Command

A quite general method is available to execute any cl command (task)
from an SPP application. The procedwksnd() andclcmdw() send
a string as a command line to the cl. The singlguraent to both
procedures is a string containing the command to execute. The only
difference between the two procedures is thandw() waits for the
completion of the command before returning to the caller

Procedure Call Purpose
clemd (cmd) Send a command line to the cl
clemdw (cmd) Send a command to the cl and wait for completion

Table 2.4: CL Command Execution Procedures.
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Sending an explicit command to the cl requires that the task have
detailed knowledge of the capabilities of the cl and of the syntax of the
command language. This means that the task is very dependent on the cl
and may no longer work if the cl is modified, or if there is more than one
version of the cl in use in a system. For this reasand() should only
be used where it is truly necessargually only in system utilities.

2.2

Memory Allocation — memio

Memory may be dynamically allocated within an SPP application. The
memory is referenced bypminter, ani nt value containing the memory
location of the first element of the beif The allocated memory may then
be accessed as if it were a statically allocated .afrag advantages to
allocating memory dynamically are to reduce the size of compiled code
and to allocate arrays whose size is not known at compile time. The pointer
is used in subsequent procedure calls to refer to the allocated mé&imery
Mem([] construct is used to access the data. When passed to a procedure, the
data are treated simply as an SPP array

Pointers are indices into (one indexed) Fortran arrays. A pointer to an
object of one data type will in general have &d#nt value than a pointer
to an object of a dérent data type, even if the objects are stored at the
same physical address. Pointers have strict alignment requirements, and it
is not always possible to coerce the type of a poiftar this reason, the
pointers returned byal | oc() andsal | oc() are always aligned for all
data types, regardless of the data type requested.

There are two types of dynamically allocated memory: stack and heap.
They are treated identically in terms of dealing with the allocated data, but
the mechanics of the allocationfdif slightly.



54  Chapter 2: Libraries and Packages: The VOS Interface

mal | oc and relatives

Heap memory is used for arbitrarily Ige¢ bufers and the resulting
pointers may be stored and passed to calling and called procedures.

Procedure and Variables Purpose

mal l oc (nmenmptr, size, datatype) Allocate heap memory

calloc (nenmptr, size, datatype) Allocate cleared heap memory

realloc (menptr, size, datatype) Reallocate memory

nfree (menptr, datatype) Free heap memory

Table 2.5: Heap Memory Allocation Procedures.

Many VOS library procedures return a pointer allocatednblyl oc(),

the imio procedures, for example. Be sure to free the memory by using the
nfree() procedure. Note that thd r ee() procedure in addition to the
allocation procedures requires the data type of the allocated memory as an
argument. These data types are passed as predefined parameter constants,
defined by the system, for exampl&_| NT, TY_REAL, etc.

Parameter Word Size Data Type
TY_BOCL SZ BOOL Boolean

TY_CHAR SZ CHAR Character
TY_SHORT SZ_SHORT Short integer

TY_I NT SZ I NT Integer

TY_LONG SZ _LONG Long integer
TY_REAL SZ_ REAL Single precision real
TY_DOUBLE SZ DOUBLE Double precision real
TY_COVPLEX SZ_COMPLEX Complex
TY_STRUCT SZ_STRUCT Structure

Table 2.6: Memory Allocation Parameter Data Types.

Memory allocated explicitly wittmal | oc() should be freed after use
by nfree(). Pointers allocated implicitlyby i mmap(), etc., for
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example, should not be freed explicitiyhey will be freed by the
appropriate close procedure such iasunmap(). The real | oc()
procedure changes the size of a previously allocateferbabpying the
contents of the bgr if necessaryThis is useful when allocating memory

of unspecified size. For example, when reading f&IrbDl N, you might
allocate a data bidr initially with some default size. After reading all of
the data you may wish to useal | oc() to insure that the bigr is only

as big as the amount of the data read. Noterthat | oc() will allocate

new memory if the passed pointeMNSLL, so it may be used in place of
mal | oc(). This may be useful in a loop in which you need not use
mal | oc() the first time you enter the loop. The onlyfeliénce between

mal | oc() andcal | oc() is that the latter sets all of the farfvalues to
zero, while the former retains the contents of the memory locations, which
should be considered garbage. The following example illustrates allocating
a block of memory usingral | oc() and calling a procedure to perform
some operation on the values.
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procedure nexanp (ncols, nrows)

# Dynamically all ocate menory and perform sone operation on array

i nt ncol s, nrows # Nunber of colums and rows
poi nter buff # The menory buffer pointer
begi n

# Allocate a real nmenory buffer with the passed size
# and data type
call malloc (buff, ncols*nrows, TY_REAL)

# Qperate on the buffer, dereferenced with Menr
# Pass the size of the array
call dostuff (Menmr[buff], ncols, nrows)

# Free the nmenory
# Pass the data type
call nfree (buff, TY_REAL)

end
procedure dostuff (buffer, ncols, nrows)
# Qperate on a 2-D array

real buffer[ncols, nrows]

int ncols, nrows
int i, j

begi n
doj =1, nrows {
doi =1, ncols {
buffer[i,j] = ...
}
}
end

Example 2.4: Allocating and Using a Memory Block.

Note that the dost uf f () procedure need not have nested loops if the
operation is independent of column or row information. In fact, the vector
operator (vops) procedures may be used for any dimensionality of arrays.
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smar k and sal | oc
Sack memory is useful for small bdiérs local to a procedure.

Procedure Call Purpose

smark (stkptr) Mark memory stack
salloc (menptr, size, datatype) Allocate stack memory
sfree (stkptr) Free memory stack

Table 2.7: Stack Memory Procedures.

The sal l oc() procedure allocates stack memoryhis is a
preallocated block of memaqra chunk of which may be used temporarily
by a task. This diérs frommal | oc() which allocates the memory at the
time it is called. © usesal | oc() , a stack pointer must be referenced first
using thesmar k() procedure. This marks the beginning of the block of
memory to be referenced. It is not necessary (nor possible) to free the
individual memory bugrs allocated using sal | oc() . Howevey the
stack pointer should be reset ussfg ee() at the end of the procedure.
The memory pointer returned byl | oc() should not be passed back to
a calling procedure but may be passed down to a called procedure.
Otherwise stack memory is used identically to heap memory allocated by
mal | oc() orcal | oc(), see Exampl@.5.

pointer sp
poi nter chuf
poi nter rbuf

begin
# Mark the menory stack
call smark (sp)

# Al locate a character buffer
call salloc (cbuf, SZ_LINE, TY_CHAR)

# Allocate a real buffer
call salloc (rbuf, npix, TY_REAL)

# Pass the nenory buffers to a procedure
call nyproc (Menc[cbuf], SZ LINE, Menr[rbuf], npix)

# Free the menory stack
call sfree (sp)
end

Example 2.5: Using Stack Memory.
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Data Structures

Dynamic memory is often used in creating and using data structures
(see “Macro Definitions” on padkbs and “Data Structures” on paf)@ for
more details and additional examples). The structure is described by macro
def i ne statements declaring the components of the structure. These may
be based on dynamically allocated memanywhich case the memory
must be allocated before the structure is addressed, and the memory pointer
passed as angument to the structure element. Exanth shows some
code that may reside in amcl ude file; it declares a structure consisting
of integers and strings.

defi
defi
defi
defi
defi
defi
defi
defi
defi
defi
defi

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

LEN I GS 20 # Structure size

CVD_STATE Memi [ ($1) +1] # Command state

LAST_CVMD PNT  Mem [ ($1) +5] # Last conmand buffer |ocation
WRI TE_CMD Memi [ ($1) +7] # Wite command to buffer?
SP_QUT_P Mem [ ($1) +8] # Tenp output file name pointer
SPOCOL_OQUTPUT  Ment|[ SP_QUT_P($1)] # Tenp output file nane

SYM TABLE Mem [ ($1) +11] # Synbol table pointer
TOKEN_VALUE Memi [ ($1) +12] # Token val ue structure

I NPUT_SOURCE  Memi [ ($1) +13] # I nput stream descriptor
STATE_STACK Memi [ ($1) +15] # Command state stack
PLOT_PARMS Mem [ ($1) +18] # Plot paraneters structure

Example 2.6: Declaring a Data Structure.

The strings $POOL_ OQUTPUT, for example) are in turn declared using
dynamically allocated memarthe pointer being saved in another element
of the structure. The elements are addressed witiveheconstructs. @
use this structure, the memory must first be allocated usihgoc() or
cal | oc() with a data type of Y_STRUCT (see Exampl@.7). The first
line of the macro provides the number of elements to allocate. Elements of
the structure are referenced name, with the pointer to the dynamically
allocated memory passed as aguanent to the macro.

# Al locate the structure
call malloc (igs, LEN_IGS, TY_STRUCT)

# Allocate stri ng structure el ements
call malloc (SP_OQUT_P(igs), SZ_LINE, TY_CHAR)
call malloc (SP_OUT_P(igs), SZ LINE, TY_CHAR

# Assi gn an integer structure el enent
| NPUT_SOURCE(i gs) = STDIN

# Fill the string structure el enent
call strcpy ("test", SPOOL_OUTPUT(igs), SZ LI NE)

Example 2.7: Using the Memory Structure.
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There may also be substructures, pointed to by an element of the
primary structure. Examp8 shows a substructure called from ¢the
structure defined ihi b$gset . h.

defi ne GP_PLAP ($1+20) # polyline attributes
define LEN_PL 4

defi ne PL_STATE Memi [$1] # polyline attributes
define PL_LTYPE Mem [ $1+1]

define PL_W DTH Mem [ $1+2]

define PL_COLOR Memi [ $1+3]

Example 2.8: Substructures of a Data Structure.

Example2.8 defines a structure for storing polyline attributes.
GP_PLAP is a member of the top-levgio structure andPL_LTYPE for
example is a member of the polyline substructure. These would be used in
code as shown in Exampi2e9.

i ncl ude <gio. h>
boi nter plap, pmp

begi n
pl ap = GP_PLAP(gp)

iDL_LTYPE( plap) = linetype

Example 2.9: Using the Substructures.

A more complicated example (Exam@d0) illustrates a
two-dimensional array in a substructure, again fgpm Note the use of
two aguments to the macro, referred tdbdsand$2 in the definition.

Example2.11 shows how the two-dimensional in the structure could be
used. Note the two gmments to the macit@_WCSPTR, one of which is
itself a symbolic definitionGP_WCS, also part of the data structure. The
structure defined in Exampkl0 is a fragment of thgio header file
gset . h, included in the source example.
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define LEN_WCS 11
define LEN WCSARRAY  ( LEN_WCS* MAX_WCS)

defi ne GP_WCSPTR (($2*LEN_WCS+$1+150) # pointer to WCS substructure

# WCS substructure

define WCS_ WK1 Ment [ $1] # wi ndow coordi nat es

define WCS_WK2 Menr [ $1+1]

define WCS_Wr1 Ment [ $1+2]

defi ne WCS_XTRAN Memi [ $1+8] # type of scaling (linear,|og)
define WCS_YTRAN Mem [ $1+9]

define WCS CLIP Mem [ $1+10] # clip at viewport boundary?

Example 2.10: Defining a 2-Dimensional Array in a Structure.

i ncl ude <gi o. h>
procedure gswi nd (gp, x1, x2, yl, y2)

poi nter gp # graphi cs descri ptor

r eal x1l, x2 # range of world coords in X
r eal yl, y2 # range of world coords in Y
pointer w

w = GP_WCSPTR (gp, GP_WCS(gp))

if (!1S_INDEF(x1))
WCS WK1(w) = x1

if (11S_INDEF(y2))
WCS Wr2(w) = y2

end

Example 2.11: Using the Structure.

2.3 Accessing Images — imio

Procedures in the sMmio library allow an SPP application to read and
write IRAF images. IRAF supports several felient image formats,
including old IRAF (OIF format), GEIS or STSDAS (STF format) and
PROS (QPOE format). Howevethe sameimio procedures are used
regardless of the specific format of the image so the formats are transparent
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to the applications program. The details of decoding the image files are
buried in thekernels beneath the applications level iwhio. The user
specifies the format type when specifying the image names as input or
output to the task. Thent ype cl environment variable also may be used

to specify the default image type. A specific image name extension
overrides the value ofnt ype. Theimio interface supports images of up

to seven dimensions. In a sense, all images are multidimensional, with the
higher unused axis lengths set to one. Andimensional image may
therefore be accessed by a program coded to operate upan an
dimensional image.

Open

To access an image, you must first open it usingithmap()
function.

Procedure Call Purpose
imp = immap (filename, node, tenplate) Open animage file
i munmap (inp) Close an image

Table 2.8: Image 1/O Functions.

This returns a pointer type variable that is the address of the image
descriptor structure. THemmap() function has three guments. The first
argument is the image filename, passed as a string, the second is a mode
specifying how to access the image. It is an integer usually passed as a
symbolic constant parametdihe access modegarment may be one of the
following symbolic parameters:
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Parameter Access Mode

READ_ONLY Read only

READ WRI TE Read and write

WRI TE_ONLY Write only

NEW FI LE New image

NEW COPY New image, header copied from open image
NEW | MAGE Alias for NEW FI LE

Table 2.9: Access Mode Parameters.

The third agument is the pointer to another image, already opened with
anotheri rmap() call. It is used only if the access modeNBW COPY
and specifies gemplate image. The header of the template image will be
copied to the header of the new image, but not the pixel values. That is, the
structure of the new output image will be similar to the existing image, but
the pixels will be diferent.

i munmap() releases any dynamically allocated memory used for file
and I/O bufers. Note thaimio refers to images by the header filename,
regardless of the format of the image. Therefore, if you do specify an
extension on the image filename in a call torap( ) , use the header file
extension, not the pixel file.

Extension | mage Format
.inh OIF, Old IRAF
. hhh STF, STScl GEIS
.qp QPOE, PROS

Table 2.10: Image Formats.

For example,
im= immap ("taurus.imh”, READ O\LY, 0)

You may omit the extension, in which caseo will interpret the filename
as an image headédfthere is only one image with the specified root name,
then it will open that one, regardless of the image format. If there are two
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images with the same root butfdifent extensions (ddrent image for-
mats),imio will open the one in OIF (IRAF) format.

Of course, it is usually up to the user to specify a filenamme néed not
append an extension unless you wish to force a particular format, or if you
wish to use a non-standard extension. If the task creates an image from
scratch (usingNEW | MAGE, not copying an existing image) there is an
additional way to control the image format. The cl environment variable
i m ype specifies the image format if there is no extension to the output
image filename.

Image data are passed framio procedures to the application via
pointers in dynamically allocated memoryhese imio procedures
comprise families of calls to read and write the pixel data. pacimt er
typed function returns a pointer to dynamically allocated memory
containing the specified part of the image.

Arbitrary Line I/O

These procedures read image data one line at a time. They allocate a
block of memory containing the pixels and return the memory pointer as
the function value.

Procedure Call Purpose

bpt = ingl 1T (inp) Get a 1-D image

bpt = ingl 2T (inp, line) Get a line from a 2-D image
bpt = ingl 3T (inp, line, band) Get a line from a 3-D image
bpt = inpl 1T (inp) Put a 1-D image

bpt = inpl 2T (inp, line) Put a line to a 2-D image
bpt = inpl 3T (inp, line, band) Put a line to a 3-D image

Table 2.11: Image Line 1/O Functions.

All of the above procedures are implemented for the usual SPP numeric
data typesshort,int,| ong, real,doubl e, andconpl ex. That is,
the procedure name represents the data type of the SiéPtbaf holds the
image pixels, not necessarily the data type of the image file. The returned
pointer type function value is a pointer to memory allocatechéyio for
the line of pixels from the image. Thisfeifs from the image file descriptor
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(i np above), which is a pointer to a structure containing the attributes of
the image as a whole. The pixel data may be passed to another procedure
via theMeni ] construct.

You need not explicitly deallocate memory allocated by any imio
procedure. Howevegou should cali munmap() for any images opened
with i mmap() . This will flush 1/O bufers and free allocated memory

Note that the outputi (rp. . . () ) procedures as well as the input
(i mg. .. ()) procedures return a pointer to dynamic memohge pixels
are written to the file when the output taufis full; in some cases, not until
the image is closed, or when flushed expliciithen writing to an output
image, your procedure fills the lberif associated with the pointer and then
calls thei np. .. () procedure.

Example2.12 is a simple example of copying one image into another
using arbitrary line 1/0O.

# | MCOPY -- Copy a 2-D inmge. The header information is preserved.
# The output inmage has the sane size and pixel type as the input inage.
# An i mage section nay be used to copy a subsection of the input inmage.

procedure incopy (in_image, out_inage)

char i n_i mage[ ARB]
char out _i mage[ ARB]
i nt npi x, nlin

i nt I'ine

pointer in, out, 11, [2
pointer immap(), ingl2r(), inpl2r

begin
# Open the input inage.
in = inmmuap (in_imge, READ ONLY, O

# Open the output inmage as a copy of the input
out = immap (out_i nage, NEW COPY, in)

# Fine the line size
npi x = I M LEN(in, 1)
nline = | M LEN(in, 2)

do line =1, nlin
i

# Copy the image |ine
call anmovr (Menr[(ingl2r (in, line)],
Menr[inpl 2r (out, line)], npix)
# Cl ose the imges
call imunmap (in)
call imunmap (out)

end

Example 2.12: Copying Images Using Arbitrary line 1/O.
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Line by Line I/O

Another family of procedures returns a pointer to a line of an image,
progressing through adjacent lines with each successive call. These dif
from the previous family in that those allow a particular line to be read in
random orderThese procedures return the next line in order

Procedure Call Purpose

status = inmgnl T (im bufptr, v) Get next image line

Table 2.12: Line by Line I/O.

This family of procedures is implemented for the usual SPP numeric
data typesshort, int, | ong, real, doubl e, andconpl ex. The
functions return the bidr pointer in an gument,buf pt r, not in the
function value as the previous procedures. These procedures return a
completion status as the function value which may be testdeforThe
argumentv is al ong array containing indexes of the line to read. This
should be initialized to ones. After each call tognl T() it is updated to
contain the index of the next line. See the example below

This family of procedures is useful for operating on an image line by
line, without regard for the absolute size or even the dimensionality of the
image. Because of the Ibeifing of image input and output and a certain
amount of asynchronous 1I/O, substantially mofecieht code can result.
Example2.13 demonstrates line by line image I/O by copying an image to
a new image. Note that the procedure works the same regardless of the
dimensionality and data type of the images. Anotimore complete
example, can be found in Appendix B.
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# | MCOPY -- Copy an inmage. The header information is preserved.
# The out put image has the sane size, dinensionality, and pixel
# type as the input inmage.

procedure incopy (in_inmage, out_inage)

char i n_i mage[ ARB]
char out _i nage[ ARB]
i nt npi x

| ong one_|

| ong vI[TM MAXDI M, v2[|M MAXDI M
pointer in, out, 11, 12
poi nter inmmap(), inmgnlr(), inpnlr()

begin
# Qpen the input inage.
in = 1immp (in_inmge, READ ONLY, 0)

# Open the output inmage as a copy of the input
out = immap (out_image, NEW COPY, in)

one_| =1

# Initialize position vectors to
# 1line 1, colum 1, band 1 ...
call anmovkl (one_l, v1, | M MAXD M
call anmovkl (one_I, v2, IM MAXD M

# Find the line size
npi x = I M LEN(in, 1)

while (imgnlr (in, 11, vl) !'= ECF &&
impnlr (out, 12, v2) != EOF)
# Copy the inage.
call amovr (Menr[11], Menr[Il2], npix)

# Cl ose the images

call imunmap (in)

call inmunmap (out)
end

Example 2.13: Line by Line Image 1/O.

General Sections

These procedures return a pointer to dynamically allocated memory
containing the pixels from an arbitrary section of an image. Note the
difference from line-by-line 1/O, in which the returned memory always
represents asingle line of an image, regardless of the dimensionality. These
procedures may return a multi-dimensional section.
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Procedure Call Purpose

bpt = ingslT (inp, x1, x2) Get a section of a1-D image
bpt = ings2T (inp, x1, x2, yl, y2) Get a section of a2-D image
bpt = ings3T (inp, x1, x2, yl, y2, z1, z2) Getasectionof a3-Dimage
bpt = inpslT (inp, x1, x2) Put a section of a1-D image
bpt = inps2T (inp, x1, x2, yl, y2) Put a section of a2-D image
bpt = inps3T (inp, x1, x2, yl, y2, z1, z2) Putasectionof a3-Dimage
bpt = inggsT (inp, vs, ve, ndim Get a general section

Table 2.13: Image Section Memory I/O Functions.

All of the above procedures are implemented for the usual SPP numeric
data types. short, int, long, real, double, and conpl ex.
i nggsT() differs from the other procedures in that the same arguments
may be used for images of any dimension. The vectorsvs and ve describe
the range of elementsin the section.
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Miscellaneous Procedures

There are a few additional procedures providing miscellaneous

capabilities.

Function Call

Purpose

inflush  (inp)

Flush the output bér

i maccess (i mage, acnode)

Test availability of image

i rcopy (input, output)

i rdel ete (i mage)

Copy images (does not
work on OIF files)

Delete the image

i nT enamne (ol dnane, newnane)

Rename the image

i rgsection (inagef, section, naxch)

Get the image section field

i mgi mage (i mspec, image, maxch)

i mgcl uster (inspec, cluster, nmaxch)

Get the image name

Get the cluster name

Table 2.14: Miscellaneous Image 1/O Functions.

The last three procedures parse a fully qualified image filename into its
components. The termBmage, section, and cluster refer to separate
fragments of a fully qualified image name. The image section is a string
enclosed by square brackets specifying some subraster of an image, for
example, [ 100: 125, 200: 450] . The image name is the filename and
group member number (applicable to STF images) without the image
section, and the cluster is the filename oBlyample2.14 should clarify
this nomenclature. Image sections will be explained in greater detail (See

“Image Sections” on pagét.)



Accessing Images — imio 69

i ncl ude <inmhdr. h>
pointer im
char i mepec[ SZ_FNAME], i mage[ SZ_FNAME], inmage_cl us[ SZ_FNAME]
poi nter i mmap()
begin
call strcpy ("w0o0xh902t.cOh[1/125[ 100: 125, 200: 450] ",
i mspec, SZ_FNAME

# Extract the inmage nane
call inmgi mage (inspec, inage, SZ FNAME)

# The image string will have "wo0xh902t.cOh[1/125]"

# Extract the cluster nane
call imgcluster (inspec, inage_clust, SZ FNAME)

# The image_clus string will contain: "wd0xh902t.cOh"
im=imuap (inspec, READ O\LY, 0)

# To get the values 1 and 125 in the string "[1/125]"
# use the followi ng macros (after opening the inmage
# as above).

cl _index = IMCLINDEX(im) # value 1
cl_size = IMCLSIZE(im # val ue 125

Example 2.14: Using Image Section Syntax.

Note that macces() tests only whether an image name is valid, not if
the image exists. Howevef the image includes an image section, then
i macces( ) will test for its existence.

Header Parameters

Image headers describe the format of an image and permit arbitrary
parameters to be carried with the pixel data. The image database interface
is theimio interface to the database containing the image headers. The first,
fixed format, part of the image header contains the standard fields in binary
and is fixed in size. This is followed by tluser area, a string buker
containing a sequence of variable length, newline delimited FITS format
keyword=value header cards. When an image is openedje laser area is
allocated to permit the addition of new parameters without filling up the
buffer. When the header is subsequently updated on disk only as much disk
space is used as is needed to store the actual header
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Images comprise keyword parameters in an image header in addition to
the pixel values. These header keywords describe the fundamental
properties of the image such as its size and data type. In addition, they
represent other pertinent information such as the instrument, date, world
coordinate transformation, or any other data thought useful by the
originator of the data. See “Standard Fields” on p&ytor an explanation
of the standard parameters available for every image.

Procedure Call Purpose

value = ingetT  (inp, keyword) Get a header parameter

i mgstr (inp, keyword, outstr, maxch) Get a string parameter

imputT  (inp, keyword, val ue) Put a header parameter

i mpstr (inmp, keyword, val ue) Put a string parameter

i maddT  (inp, keyword, default) Add a header parameter

i mastr (inp, keyword, default) Add a string parameter

i maddf (imp, keyword, default) Add a keyword with no value

i mrdel f (inp, keyword) Delete a parameter
i stat = i naccf (i np, keyword) Test if parameter exists
itype = inmgftype (inp, keyword) Return datatype of parameter

Table 2.15: Image Header Parameter Functions.

In each procedure, the name of the parameter is specified as a character
string (keyword here), sometimes referred to deeld. The procedures
inget T(), inputT(), andi maddT() are implemented for the SPP
data typedool , char, short,int, | ong, real, anddoubl e. The
argument imp is a pointer type reference to the image returned by
i mmap() .

New parameters will typically be added to the image header with either
one of the typed madd() procedures or with the lower levietraddf ()
procedure. The former procedures permit the parameter to be created and
the value initialized all in one call, while the latter only creates the
parameterin addition, the typed madd() procedures may be used to
update the values of existing parameters, i.e., it is not considered an error if
the parameter already exists. The principal limitation of the typed
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procedures is that they may only be used to add or set parameters of a
standard data type.

The value of any parameter may be fetched with one ofrtget T()
functions. Be careful not to confuserget s() with i ngstr() (or
i mput s() withi npst r () ) when fetching or storing the string value of
a field. Fully automatic type conversion is provided. Any field may be read
or written as a string, and the usual type conversions are permitted for the
numeric data types.

The i maccf () function may be used to determine whether a field
exists. Fields are deleted with ndel f (). It is an error to attempt to
delete a nonexistent field. The following example (Exar@dé)
illustrates handling of image header parameters. The character string field
can take the name of any existing keyword in the image headgr
DATE_OBSori _naxi s1.

# Get the value of datatype and val ue of existing keywords
# and append new keywords to the i mage header with those val ues.

switch (|rrgftype (im field)) {
case TY_BOOL
i f (|mgetb (im field))
O VALB(0) = true
el se
O VALB(0) = false
call strcpy ("NEWBKY", nfield, SZ_KEYWORD)
call imaddb (im m‘ield OVALB(o))

case TY_CHAR
call imgstr (im field, OVALC(0), SZ_LINE)
call strcpy ("NEWSKY", nfield, sz  KEYWORD)
call imastr (im nfield, OVALI(o))

case TY_ING

O VALI(0) = imgeti (im field)
call strcpy ("NEW.IKY", nfield, SZ_KEYWORD)
call imaddi (im nfield, OVALI(0))

case TY_REAL:
O _VALR(0) =|rrgetr (im field)
call strcpy ("NEWRKY", nfield, SZ KEYWORD)
call imaddr (im nfiel d O _VALR(0))

defaul t:
call error (1, "unknown expression datatype")

Example 2.15: Handling Image Header Parameters.
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Procedure Call Purpose
I'ist = inofnls (inmp, tenplate) Open a sorted file template
Iist = inmofnlu (inp, tenplate) Open unsorted file template
nchars = inmgnfn (list, fieldnanme, maxch) Get next filename

inmcfnl (list) Close template

Table 2.16: Image File 1/0O Functions Handling Templates.

The field name list proceduresrof nl [ su] (), i mgnfn(), and
i mcfnl () procedures are similar to the fio file template facilities, except
that the@ i | e notation is not supported. The template is expanded upon
an image header rather than a directbhysorted lists are the most useful
for image header fields. If sorting is enabled each comma delimited pattern
in the template is sorted separatedther than globally sorting the entire
template after expansion. Minimum match is permitted when expanding
the template, another thfence from file templates. Only actual, full
length field names are placed in the output list.

Standard Fields

The imio database interface, described above, may be used to access
any field of the image headencluding thestandad fields shown in
Table2.17, existing for every image. In addition, there may be other
parameters unique to the particular image.
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Keyword Type Declaration

i_ctime | ong Time of image creation

i _history string History string bufier

i_limime | ong Time when limits (minmax) were last
updated

i _maxpi xval r eal Maximum pixel value

i _m npi xval r eal Minimum pixel value

i_mine | ong Time of last modify

i _naxis i nt Number of axes (dimensionality)

i _naxi sN | ong Length of axis ni(_naxi s1, etc.)

i_pixfile string Pixel storage filename

i _pixtype i nt Pixel datatype (SPP integer code)

i title string Title string

Table 2.17: Standard Header Keywords.

The names of the standard fields sharei anprefix to reduce the
possibility of collisions with user field names, to identify the standard fields
in sorted listings, to allow use of pattern matching to discriminate between
the standard fields and user fields, and so oni Thaefix may be omitted
provided the resultant name does not match the name of a user parameter
is however recommended that the full name be used in all applications

software.

You will need to use the include fitg mhdr . h> when dealing with
image headers. This defines macros for standard image header parameters
dealing with fundamental characteristics of the image such as the size, data
type, etc. Several header parameters are available viaibestructure
defined by<i mhdr. h>. Others may be accessed through timo
database procedures. Parameters may be read or written. If a parameter
does not exist, it must be created. Exan2Zplé is a fragment of code that
finds the size of the image, the number of pixels per line and the number of
lines. Since the keyword values imble 2.17 are accessible through the
<i mhdr . h> structure, they can be used to get keyword values from an

image using théedit task.
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i ncl ude <i mhdr. h>

char i mage[ SZ_FNAME]
pointer im

I nt npts, nrow

poi nter imap()

begi n

# Qpen the inmge

im= immap (imge, READ ONLY, 0)
# Find the i mage size

npts = I M LEN(i m 1)

nrow = | M LEN(i m 2)

end

Example 2.16: Using Header Parameters.

Image Sections

A fundamental feature afnio is the capability to treat a subset of an
image identically to an entire image. The image filename as passed to
i mmap() may include anmage section which specifies what part of the
image to read. The image section facility greatly increases the flexibility of
the imio interface. Image sections are specified as part of the image name
input toi nmap() , and are not visible to the applications program, which
sees a somewhat smaller image, or an image of lesser dimensionality
Some examples are shown beldwaddition, see “Wrld Coordinates —
mwcs” on pagd.29 describing thenwcs world coordinate system library
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Section Refersto...

pi x[] The whole image

pix[i,j] The single pixel value (scalar) at [i,j]
pi X[ *.*] The whole image, two dimensions
pi X[ *, -*] Flip Y-axis

pi x[*,*, b] B and B of 3-D image

pi X[ *, *:s] Subsample in Y by S

pi X[ *, 1] Line | of image

pi x[c, *] Column c of image
pix[il:i2,j1:j2] Subraster of image

pi x[il:i2:sx,j1:j2:sy] Subraster with sampling

Table 2.18: Image Section Syntax.

Image Name Templates

The filename template package of procedures permits the use of
wildcards or nested lists of image filenames. The functionality and calling
sequences are similar to those of tioefilename template package (see
“Filename Emplates” on pag&0l).

An image template is expanded into a list of image names or image
sections withi nt open(). The list is not globally sorted, however
sublists generated by pattern matching are sorted before appending the
sublist to the final list. The number of images or image sections in a list is
given byintl en(). Images are read sequentially from the list with
i mt geti n(), which return€€OF when the end of the list is reached. The
list may be rewound withnt r ew() . An image template list should be
closed withi nt cl ose() to return the bdiérs used to store the list and its
descriptor
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Procedure Call Purpose

list = intopen (tenplate) Open image template

ninmages = inlen (list) Return number of images
imrew (list) Rewind template list

nchars = intgetim (list, fname, maxch) Get next image name

imclose (list)

Close template

Table 2.19: Image Template Functions.

Note that the nt function i ngeti m()

returnsECOF upon attempting

to read at the end of file. Otherwise, it returns the number of characters in

the image name.

Example2.17 is the
i mages. i ncopy task in

top level

procedure
i mages$i mutil/t _incopy.x. |t

for the IRAF

demonstrates handling image name templates. Some comments have been

added to clarify the code.

i ncl ude <i mhdr. h>

# | MCOPY -- Copy image(s)

# The input images are given by an inmage tenplate |ist.

# The output is either a matching list of inmages or a directory.
# The nunber of input inages may be either one or match the nunber
# of output inmages. |Inmage sections are allowed in the input

# images and are ignored in the output images. If the input and

# out put inmage nanes are the same then the copy is perfornmed to a
# tenporary file which then replaces the input image.

procedure t_intopy()

char inmtlistl][SZ LI NE] # I nput image |ist

char inmtlist2[SZ_LINg| # Qutput inmage |ist

bool verbose # Print operations?

char i magel[ SZ_PATHNAME] # I nput image nane

char i mage2[ SZ_PATHNAME] # Qut put inmage name

char dirnanmel[ SZ_PATHNANE] # Directory nane

char dirnane2[ SZ_PATHNAME] # Directory name

int listl, list2, root_len

int intopen(), intgetim(), intlen()

int  fnldir(), isdirectory()

bool ¢l get b() (Continued...)

Example 2.17: Handling Image Name Templates.
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begin

# Get input and output image template lists.

# Get the input image template from the task parameter “input”,

# for

# for

example: input = "-imh", input = "iml.imh,im2.imh,w0*.cOh"
call  clgstr ("input’, imtlistl, SZ_LINE)
# Get the output image template from the task parameter “output",
example: output = $home/data/ or output = cimf.imh
call clgstr ("output", imtlist2, SZ_LINE)
verbose = clgetb  ("verbose")
# Check if output string is a directory
if  (isdirectory (imtlist2, dirname2, SZ_PATHNAME)> 0) {
# When output = "$home/data/" then isdirectory is >0
# and dirname2 will have the output string.
listl = imtopen (imtlistl)
while  (imtgetim (list1, imagel, SZ_PATHNAME)!= EOF) {
# imtopen will return a pointer to a list of files and
# each occurrence of imgetim will put an image name in imagel
# Strip the image section first because fnldir
# recognizes it as part of a directory. Place
# the input image name without a directory or
# image section in string  dirnamel
call get root (imagel, image2, SZ PATHNAME)
root_len = fnldir (image2, dirnamel, SZ_PATHNAME)
call strcpy (image2[root_len+1], dirnamel, SZ PATHNAME)

end

call strcpy (dirname2, image2, SZ_PATHNAME)
call strcat (dirnamel, image2, SZ PATHNAME)
call img_imcopy (imagel, image2, verbose)

}
call imtclose  (listl)

} else

# Expand the input and output image lists
listl = imtopen (imtlistl)
list2 = imtopen (imtlist2)
if (imtlen (list1) I= imtlen (list2)) {

call imtclose  (listl)
call imtclose  (list2)

call error (0, "Number of .. images not the same")

# Do each set of input/output images

while  ((imtgetime (list1, imagel, SZ PATHNAME)!= EOF) &&
(imtgetim (list2, image2, SZ_PATHNAME)!= EOF)) {

call img_imcopy (imagel, image2, verbose)

call imtclose  (listl)
call imtclose  (list2)

Example 2.17 (Continued): Handling Image Name Templates.
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2.4

Formatted I/O — fmtio

SPP includes complete facilities for formatting numeric and text data for
input, output, and internal use.

printf and its relatives

Text and binary numbers formatted as text may be directed to the
standard outpulSTDOUT), the standard error strea@TDERR), a text file,
or a string. Note thaBTDOUT may be redirected to a file or piped to
another task in the IRAF cl. Binary values may be formatted via a format
specification string. The values to format must be passed in separate
procedure calls. Theri nt f () family of procedures performs formatted
output. These are similar to the<8t di o> library procedures except that
the values to format are not included in the calling sequence because SPP
(Fortran) does not handle variable numbers of calliguraents in a
portable manner

Procedure Call Purpose

printf (format) Formatted print t&TDOUT
eprintf (format) Formatted print t&TDERR
fprintf (fd, format) Formatted print to any open file

sprintf (outstr, nmaxch, format) Formatted print to a string def

clprintf (param fornat) Formatted print to a cl parameter
pargT (val ue) Pass a numericgument to gri ntf ()
pargstr (val ue) Pass string gument to gri ntf ()

Table 2.20: Formatted Output Functions.

The values to format and print are passedpaagT() procedures.
There is a separate procedure for each of the SPP dataldgpéscchar,
short,int,|ong, real, doubl e, andconpl ex. For example, for
numerical valuespar gr () is used for floating pointpar gi () for
integer while par gstr () would be used for strings. Note that the data
type specified by the name of the procedure represents the data type of the
parameter passed to the format, not the format itself. In general, any SPP
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data type variable may be formatted by apyintf() format
specification.

Format Codes

A format specification is a string that describes how values are to be
represented in the output. The string may include any text, but fields may
be included to format values. These fields have the %av@Cn. Any text
not preceded by a percent character will be written to the output
unchanged. The percent character is a required part of the format field and
the remainder of the word specifies the form of the outpus. the field
width, d is the number of decimal places or the number of digits of
precision,C is the format code, andis radix character (for format code
only). Thew andd fields are optional. The string may be a literal, a string
variable, or a predefined parameter constant. Therefore, run-time formats
are possible. The format codésre shown in dble 2.21.
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Code

Format

Boolean, true or false/és orno only on output)

Single charactec or\ ¢ or\ Onnn

Decimal integer

Exponential, d specifies the precision

Fixed format, d specifies the number of decimal places

General format, d specifies the precision

Sexagesimal, hh:mm:ss.ss, d is the number of decimal places

Minutes, seconds (or hours, minutes), mm:ss.ss

Octal integer

Convert integer in any radix n

String, d field specifies max chars to print

Advance to column given as field w

Unsigned decimal integer

Output the number of spaces given by field w

Hexadecimal integer

Complex forma( r, r) , d specifies the precision

Table 2.21: Output Format Codes.
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The conventions for the (field width) specification are as follows:

Code Effect

n Right justify in field of n characters, blank fill

-n Left justify in field of n characters, blank fill

On Zero fill at left, only if right justified

absent Use as much space as needed, d field sets precision
@] Use as much space as needed, d field sets precision

Table 2.22: Field Width Specifications.

Escape sequences (e\g., for newline) are replaced by the appropriate
character value on output:

Escape

Replacement Character

\b
\f

Backspace

Form feed

\n

\r

Newline (LF)

Carriage return

\t
\H

Tab

String delimiter character

\l
\

Character constant delimiter character

Backslash character

\ nnn

%%

Octal value of character

Insert a percent character in the output

Table 2.23: Escape Sequences.

Note that a newline is not automatically written for everyntf()
call, as with a Fortrad/RITE Use\n in the format text to explicitly write
a newline. (See Exampk18).
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mean = 4027.123
sigma = 33.98423

call printf ("mean: %96g sigma: %.2f\n")
call pargr (nmean)

call pargr (sigm)

Output Produced...

nmean: 4027.12 signa: 33.98

Example 2.18: Writing a Newline.

Additional Output Procedures

Substitutingepri ntf () for printf () would write to the standard
error streanSTDERR instead of standard output. These two streams are
treated separately by the clo Twrite to an arbitrary text file, use
fprintf(), specifying a file descriptor for an open text file, see

Example2.19.
char fil ename[ SZ_FNAME] # Qutput text file nane
i nt i val
real rval
i nt fd
i nt open()

begi n

# Open the output text file
fd = open (filenane, NEWFILE, TEXT_FILE)

# Wite formatted out put

call fprintf (fd, "ival = %, rval = %\n")
call pargi (iv)
call pargr (rval)

Example 2.19: Writing an Arbitrary Text File.

Similarly, formatted text may be written to a text string variable using
sprintf(). This is particularly useful for error messages or runtime
formats, i.e., generating a format string to use in ang@hent f () call.
Note thatspri nt f () includes an gument specifying the maximum size
of the output character string.
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char filename[SZ_FNAME]

char  outstr[SZ_LINE] # String taking formatted  output
char  fmtstr[SZ_LINE] # Format string

int ival

real rval

begin

# Write formatted output

call  sprintf (outstr, SZ_LINE, “"ival = %d, rval = %fn")
call pargi (ival)
call pargr (rval)

# Write the string to output

call  printf (outstr)

# Write the output string

call  sprintf (outstr, SZ LINE, "Couldn't open file %s\n")
call pargstr (f ilename)

call error (0, outstr)

# Get a format string from the cl

call clgstr ("format”, fmtstr, SZ_LINE)

call  printf (fmtstr)
call pargi (ival)

Example 2.20: Writing Output to a Text String Using sprintf()

Formatted Input — scan , et. al.

Formatted input may be read from the standard input st&JdiN, a
text file, a string variable, or a cl parameter using 9te@n family of
procedures. Each scan procedure returns an integer status as the function
value. This status will contalBOFupon reading end of file.

Procedure Call Purpose
scan () Scan fromSTDIN

stat = fscan (fd) Scan from file opened &g

stat = sscan (str) Scan from the stringtr

stat = clscan (param) Scan from the cl parametgaram
scanc (ch) Get the next character from a scan
reset_scan () Rescan same input

Table 2.24: Formatted Input Functions.
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Note that as with the outpupr(i nt f () family) procedures, variables
are not changed by thecan() procedures. 8ues read are placed in
variables using thgar gT() family of procedures.

Procedure Call Purpose

gargT (val ue) Get a typed gument
gargstr (outstr, maxch) Get rest of line
gargwd (outstr, naxch) Get next “word”
gargrad (lval, radix) Non-decimalgar gi ()

gargtok (tok, outstr, maxch) Get nexttoken

Table 2.25: Input Functions.

There is a separat@ar gT() procedure for each of the SPP data types:
bool , char, short, int, | ong, real, doubl e, andconpl ex. A
word, as recognized bgar gw d(), is any string separated by white
space.
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define DATA_SI ZE 1024
procedure getfield (xcoord, ycoord, npts)

# Read 2 colums of nunbers from STDIN to dynanically all ocated
# arrays passed back via pointers

poi nter xcoord, ycoord # Coordi nate arrays
i nt npt s # Nunber of points
i nt row

char i nline[ SZ_LI NE]

i nt getline()

begin

# Default nunber of data val ues
npts = DATA _SI ZE

# Al locate the arrays

call malloc (xcoord, npts, TY_REAL)
call malloc (ycoord, npts, TY_REAL)

row =0
while (getline (STDIN, inline) != EOF)
row = row + 1 # Read an input file row

if (row > npts)

npts = npts + DATA SIZE # No room-- Allocate nore scratch space

# Real | ocate space to save allocated nenory
call realloc (xcoord, npts, TY_REAL)
call realloc (ycoord, npts, TY_REAL)

# Put the values into the data arrays
call gargr (Menr[xcoord+row 1])
call gargr (Menr[ycoord+row 1])

call sfree (sp)
npts = row
# Resize data buffers to natch anount of data read
call realloc (xcoord, npts, TY_REAL)
call realloc (ycoord, npts, TY_REAL)
end

Example 2.21: Formatting Output.

Internal Formatting

These procedures convert a string representation of a nhumber into its
binary value. They perform the same function as ¢aeg... ()
procedures, but do I/O internallhat is, they read from a character string
variable, not an input stream or file. Each function may be called
repeatedly to decode a string of values delimited by white space or
embedded in non-numeric characters.
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Procedure Call Purpose

nchar = ctoT (str, ip, value) Convert string to binary (there is
noct os()

nchar = cctoc (str, ip, char) char constant to char

nchar = gctod (str, ip, dval) Convert any number toubl e

nchar = gctox (str, ip, xval) Convert any number toonpl ex

nchar = gctol (str, ip, lval, radix) Variable radix

nchar = ctowd (str, ip, outstr, naxch) Word or string

t oken

= ctotok (str, ip, outstr, naxch) Extract token

Table 2.26: Internal Formatting Functions.

There is a separat¢ oT() procedure for each of the SPP numeric data
types:i nt, | ong, r eal , doubl e, andconpl ex. All of the procedures
except ct ot ok() return the number of non-white input characters
converted as the integer function value.

ct ot ok() returns an integer code identifying the type token
returned. ©kens represent the smallest substrings recognized in the string.
The values assigned to the token returnedthbyt ok() are defined in the
include filect ot ok. h.

While ct owr d() nominally recognizesvords separated by white
space, any string enclosed in quotes is treated as a single word.

Thedt oc() format (see &ble 2.27) is one of the characters , g, h,
orm See “Format Codes” on pag® for their meaning.
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procedure parse (instr, first, second, third)
# Parse a string expected to contain three val ues, as:
#"[1,2,3]" or "4 5 6"

char instr[ARB] # Input string
int first, second, third # Values in string
int ip
i nt nchar
int ctoi()
begi n
ip=1 # Initialize the string pointer

# Read the first field

if (ctoi (instr, ip, first) == 0) {
# Nothing there
first = | NDEFI
return

}
# Read 2nd field, The string pointer ip is just after 1st number
if (ctoi (instr, ip, second) == 0) {

# Nothing there

second = | NDEF

return

}

# Read last field

if (ctoi (instr, ip, third) == 0) {
# Nothing there
third = | NDEFI

end }
Example 2.22: Using Internal Formatting Functions.
Procedure Call Purpose
nchar = itoc (ival, outstr, maxch) i nt tochar
nchar = Itoc (lval, outstr, maxch) | ong tochar
nchar = ctocc (char, outstr, maxch) char tochar constant
nchar = gltoc (lval, outstr, maxch, radix) Genericl ong
nchar = xtoc (xval, outstr, maxch, decpl, compl ex tochar
format, width)
nchar = dtoc (dval, outstr, maxch, decpl, doubl e tochar

format, wi dth)

Table 2.27: Conversion Functions.
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Character and String Functions

SPP characters are implemented as integers. Character strings are
implemented as fixed length arrays of characters (integers) with the
element following the last character set to zero to indicate the end of the
string. Therefore they cannot be treated simply as scalar variables in
assignment statements. There is a family of procedures for assigning and
otherwise manipulating strings. Thehr... () family of functions
convert a single character (typehar) to upper or lower case. The
converted character is returned as the function value.

Procedure Call Purpose
ch = chrupr (ch) Change character to upper case
ch = chriw (ch) Change character to lower case

Table 2.28: Character Case Conversion Functions.

Note that there are macro definitions to accomplish the same purpose.
The macroTO_UPPER() converts a single character to upper case and
TO LOVER() converts a character to lower case. Howetherse assume
that the character is already the appropriate case. These macros are defined
in<ctype. h>. Thestr... () family of procedures deal with character
strings ¢har arrays).

Procedure Call Purpose

nchar = gstrcat (str, outstr, maxch) Returns length of output string
strcat (str, outstr, maxch) Concatenatst r toout st r

nchar = gstrcpy (from to, maxch) Returns length of output string
strcpy (from to, maxch) CopyEQCS delim string

nchar = strlen (str) Length of string (excludingOS)
striw (str) Convert string to lower case
strupr (str) Convert string to upper case

Table 2.29: Basic String Functions.

Note thatstrlen() returns the number of characters actually
occupying the string, not including the EOS character but including any
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blanks, not the declared size. This isfatént from the Fortrar en
function, which returns the declared size of a string, implicitly padded with

blanks to the declared size.

Procedure Call Purpose

i ndex = stridx (char, str) First index of character in string

index = stridxs (set, str) Return the index of the first occurrence of
any of a set of characters in a string

i ndex = strldx (char, str) Last index of character in string

i ndex = strldxs (set, str) Return the index of the last occurrence of

any of a set of characters in a string

Table 2.30: String Index Functions.

Note that the grumentchar instridx() andstrl dx() is not a
string (a double quoted literal or char array) but an integer representing a
single charactelf it's a literal, it should be igngle quotes. Otherwise, it

should be a scalahar variable.

Procedure Call

Purpose

i ndex strdic (instr, outstr,

maxch, dict)

Search a dictionary string for a
match with an input string

nchar = strnac (macro, argstr, Expand a macro by string
outstr, maxch) substitution
i nt = strsrt (x, sb, nstr) Sort a list of strings

strtbl (fd, buf, strp,

Print a list of strings.

nstr, first_col,last_col,

maxch, ncol)

Table 2.31: Complex String Functions.

Note that macro expansionsi r mac( ) is not recursive.
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String Comparisons

Procedure Call Purpose

index = strcnp (strl, str2) Compare two strings.

bool = strOP (s1, s2) Is sl OP s2? (see below)

-1,0,1 = strncnp (s1, s2, n) Counted comparison

nextch = strsearch (str, patstr) Fast substring search

nextch = strmatch (str, patstr) Match strings using

metacharacters

nextch = gstrmatch (str, patstr, Generalized pattern
first, last) matching

bool = streq (strl, str2) S1==Sy

bool = strne (strl, str2) s l=s,

bool = strlt (strl, str2) $1<S»o

bool = strgt (strl, str2) S$1> S,

bool = strle (strl, str2) S <=5y

bool = strge (strl, str2) S1>=S,

Table 2.32: String Comparison Functions.

Thestrcnp() procedurereturns-nif sy <s,, 0if 51 =5y, and +nif
S1 > Sp. The bool procedure st rop() determines whether two strings
satisfy alogical operation. The function is selected by replacing op with an
operator from the list.
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For example, to test whether strings are equalstiseeq( ) . Pattern
matching characters ametacharacters are defined in the include file

<pattern. h>:

Procedure Metacharacter  Purpose

CH BOL n Beginning of line

CH _NOT A Not, in character classes
CH EQL $ End of line symbol
CH_ANY ? Match any single character
CH _CLOSURE * Zero or more occurrences
CH CCL [ Begin character class
CH_CCLEND ] End character class
CH_RANGE - Range, as in [a-Z]
CH_ESCAPE \\ Escape character

CH_VHI TESPACE # Match optional white space
CH_| GNORECASE { Begin ignoring case
CH_MATCHCASE } Begin checking case

Table 2.33: Pattern Matching Metacharacters.

Evaluating Expressions — evexpr

The evexpr () procedure is a function which takes an algebraic
expression as input, evaluates the expression, and returns the value of the

expression as the function value.

Procedure Call

Purpose

opt = evexpr (expr, getop_epa,

uf cn_epa) Evaluate expression

Table 2.34: Evaluating Expressions.

The input expression is a character string. It is parsed and reduced to a
single value. The operands to the expression may be either constants or
identifiers (strings). If an identifier is encountered the user supplied get
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operand procedure is called to return the value of the operand. Operands
are described by the operand structure, and operands are passed about by a
pointer to such a structure. The value of the expression is returned as a
pointer to an operand structure containing the function value. Operands of
different data types may be mixed in an expression with the usual
automatic type coercion rules. All SPP data types are supported including
strings €har arrays). All SPP operators and intrinsic functions are
recognized. (See “Intrinsic Functions” on p&gs.

Output is a pointer to an operand structure containing the computed
value of the expression. The output operand structure is dynamically
allocated byevexpr () and must be freed explicitly by the user with
nfree().

Note that the second and thirdgaments are thent entry point
addresses of procedures. The functiacpr () is used to return the
address of a function. If there is no function supplied,Nidel. for the
address. A generic example is:

op = evexpr (expr, locpr(getop), locpr(ufcn))

with the useisupplied procedures having the calling sequences shown in
Table 2.35:

Procedure Call Purpose
getop (identifier, op) Return named operars/alue
ufcn (fcn, args, nargs, op) Return named functios''value

Table 2.35: Calling User-Supplied Procedures.

If a syntax error occurs while parsing the expresswexpr () will
take the error actiogyntax error. TheNULL aguments could be replaced
by thel ocpr () addresses of get operand and/or user function procedures
if required by the application.

The lexical form of the input expression is the same as that of SPP and
the cl for all numeric, charactesnd string constants and operators. Any
other sequence of characters is considered an identifier and will be passed
to the user supplied get operand function to be turned into an operand.

This procedure requires the include #levexpr . h> that defines the
operand structure. The operand structure is used to represent all operands
in expressions and on the parser stack. Operands are passed to and from the
outside world by means of a pointer to an operand structure. The caller is
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responsible for string storage of string operands passeddspr () .
evexpr () manages string storage for temporary string operands created
during expression evaluation, as well as storage for the final string value if
the expression is string valued. In the latter case the value string should be
used beforevexpr () is called again.

Calling Procedure Returned Data Type

O _TYPE( op) Operand data type

O_VALB( op) Boolean value

O_VALI (op) Integer value (or string pointer)
O VALR( op) Real value

O_VALC( op) String value

Table 2.36: Evaluating Procedure Data Types.

The following simple example (Exam@®e23) evaluates a constant
expression and prints the value on the standard output. An only slightly
more complicated example (Exampl4) uses the proceduget op()
to return an operand value.

i ncl ude <evexpr. h>
poi nt er op, evexpr()
begi n

# Eval uate an expression
op = evexpr ("sin(.5)**2 + cos(.5)**2)", NULL, NULL)

# Print the result of the operation
switch (O TYPE(op)) {
case TY_I NT:
call printf ("result = %l\n")
call pargi (O_VALI(op))
case TY_REAL:
call printf ("result = %\n")
call pargr (O_VALR(op))
case TY_CHAR:
call printf ("result = %\n")
call pargstr (O_VALC(op))
}

# Free the operand structure nmenory
call nfree (op, TY_STRUCT)

Example 2.23: Evaluating Data Types.
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include  <evexpr.h>
real procedure evalu8 (expr)
pointer  igps
char expr[ARB]
pointer  op
int npts
extern get_op()
pointer  evexpr()
int locpr()
begin
op = evexpr (expr, locpr(get_op), 0) # Evaluate expression
switch  (O_TYPE(op)) {
case TY_REAL:
return  (LOP_VALR(op))
case TY_INT:
return  (LOP_VALI(op))
call mfree (op, TY_STRUCT)
end
procedure get op (operand, op)
# Assigns value to expression operand. Allowed operands are x and .
# Values are taken from the common /evopcom/.
char operand[ARB] # operand name
pointer op # operand (output)
common levopcom/ X, y
begin
# Set up operand structure (zero length ==> scalar)
call xev_initop (op, O, TY_REAL)
switch  (operand[1])
case X/, X' # Allow either case operand
LOP_VALR(op) = x # Assign a real-valued operand
case 'y, Y
LOP_VALR(op) =y
# Free operand structure memory
cal mfree (op, TY_STRUCT)
end

Example 2.24: Returning Operand Value.
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2.5

File /O —fio

File 1/0 takes place usingsiream, that is, an 1/0 channel available to
the SPP program. The standard streams, referred oSN, STDOUT,
and STDERR (macros for integer values specifying a stream), are always
open. That is, you need not calpen() to access thenSTDI N and
STDOUT read from and write to the user terminal when working
interactively but may be redirected or pip&I.DERR is for warning or
error messages. The fio library permits input from and output to binary or
text files.

Before any 1/0O can be done on a file, the file must be opened. The
open() procedure may be used to access ordinary files containing either
text or binary data. @ access a file on one of the special devices such as
magnetic tape, a special open procedure must be usedoriserve
resources (file descriptors, berf space) a file should be closed when no
longer needed. Any file bigfrs that may have been created and written into
will be flushed before being deallocatetlose() ignores any attempts to
closeSTDI N. Attempts to clos&TDOUT, or STDERR cause the respective
output byte stream to be flushed, but are otherwise ignored. An error results
if one attempts to close a file that is not open. File 1/0O functions are listed in
Table 2.37; if you are working with binary datable2.42, “Binary File
I/O Functions.,” on pag®8 lists additional functions.

Procedure Call Purpose

fd = open (fname, node, type) Open or create a text or binary file
cl ose (fd) Close a file
flush (fd) Flush any buered output to a file
seek (fd, loffset) Set the file dket of the next char to be

read or written

| ong

= note (fd) Note the position in file for later seek

Table 2.37: File 1/0 Functions.



96 Chapter 2: Libraries and Packages: The VOS Interface

The access modes (the modguanent tcopen( ) ) are:

Access Mode

Definition

READ_ONLY Read-only from an existing file

WRI TE_ONLY Write-only to an existing file

READ WRI TE Read from or write to an existing file
APPEND Write to the end of an existing file

NEW FI LE Create a new file

TEMP_FI LE Temporary file; delete upon task completion

Table 2.38: File Access Modes.

The file types (thé ype agument toopen() ) are:

File Type Definition

TEXT_FI LE File of lines of text

Bl NARY_FI LE Buffered binary byte stream
SPOCL_FI LE In-memory “file”

Table 2.39: File Types.



File /O —fio 97

Procedure Call Purpose
fseti (fd, param val ue) Set integer fio options
val ue = (fd, param Get the value of an integer fio parameter
val ue = (fd, param Get value of a long integer fio parameter
fstats (fd, param outstr, maxch) Get a string valued fio parameter
stat = finfo (fnanme, ostruct) Get directory information on a file
stat = access (fnane, node, type) Determine the type or accessibility of a file
del ete (fnamne) Delete a file
rename (ol d_fnane, new fnane) Change the name of a file
nktenmp (root, fname, maxchars) Make a unique temporary filename
falloc (fname, nchars) Preallocate file space
stat = protect (fname, action) Protect a file from deletion
fcopy (fromfnanme, to_fnane) Copy a file
fcopyo (fromfd, to_fd) Copy open files

Table 2.40: File Manipulation Commands

In the above procedures, the common calling sequence variables are
declared as follows:

Variable Name Contents
int fd File descriptor
char fname[ SZ_FNAME] Filename string

Table 2.41: File Variables.

Any file may be accessed after specifying only the filename, access
mode, and file type parameters using tdmen() call. Occasionally
however it is desirable to change the default file control parameters, to
optimize 1/O to the file. Thé set () procedure is used to set the FIO
parameters for a particular file, whilget () is used to inspect the values
of these parameters. The special vdDEEAULT will restore the default
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value of the indicated paramet&he procedureseek() is used to move

the file pointer (dket in a file at which the next data transfer will occur).
With text files, one can only seek to the start of a line, the position of which
must have been determined by a prior calhéd e() . For binary files,
seek() merely sets the logical fskt within the file. The logical tsfet is

the character &det in the file at which the next 1/O transfer will ocdur
general, there is no simple relationship between the logitsdtaind the
actual physical d$et in the file.

Binary File I/O

The minimum size addressable SPP data item is a charastely
implemented as ahort (two byte) integerTherefore, in binary file 1/0,
the size of the bidr is specified in units ofhars, orshorts. It is
possible to pack bit and byte data imtbars. See theosb procedures
described in “Bit & Byte Operations — osb” on pdS.

Procedure call Purpose
stat = read (fd, buffer, nch) Read a binary block of data from a file
wite (fd, buffer, nch) Write a binary block of data to a file

Table 2.42: Binary File I/O Functions.

Ther ead() procedure reads a maximumrath characters from the
file with descriptoff d into the user supplied memory berf The following
example (Exampl@.25) illustrates reading a binary file and extracting
values. This is a straightforward example because all of the desired values
are short integers at the beginning of the file.
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procedure al ghead (al fn,

# ALGHEAD -- Read header paraneters frombinary alias file. These
# are width & height of image, offsets in x &y, and number bits/pixel
char al f n[ ARB] # Alias file nane

poi nter al # File descriptor

I nt nx, ny # | mage size

i nt xof f, yoff # Offsets

i nt nbi t # Bits per pixel

poi nter al # Alias file descriptor

short sval [ 5] # Header

int status # Return status

begin

# Open the binary input alias file
open (alfn

a

# Read the 5 (short) word header

st at us
# Parse header
nx sval [1

3
4
5

xofF sva
yof f sval
nbi t sval

end

read (al

nx, xoff, yoff, nbit)

READ ONLY, BI NARY_FI LE)

sval, 5)

ny = sval[2
Example 2.25:

Reading Values From a Binary File.

The next slightly more complicated example () demonstrates extracting
individual bytes from a binary file. The fragment of code reads a single
word consisting of four bytes and assigns the individual byte values to
separate short integers using tise byt nov() procedure.

# Read a word fromthe Alias file
status = read (al, albuf, 2)
run = 0 # Run length
call bytrmov (al buf, 1, run, 4, 1)
# The col or val ues
call bytrmov (albuf, 4, rv, 2, 1)
call bytmov (al buf, 3, gv, 2, 1)
call bytrmov (al buf, 2, bv, 2, 1)
Example 2.26: Extracting Bytes From a Binary File.
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Text Character 1/0

The procedureget c() andput c() read and write character data, a
single character at a time.

Procedure Call Purpose
stat = getc (fd, char) Get achar from a file
put c (fd, char) Putchar to afile
put cc (fd, char) Handles unprintable characters
stat = getchar (char) Get char fronSTDI N
put char (char) Put char t&sTDOUT
stat = getline (fd, Iinebuf) Get a line of text
stat = getlline (fd, linebuf, nmaxch) Getaline of text
putline (fd, linebuf) Output a string té d

Table 2.43: Text Character I/O Operations.

Note thatgetchar() and putchar() deal with STDI N and
STDOUT respectively so they danrequire a file descriptoThe other
procedures require a previous callapen() or may specify one of the
standard streanfSTDI N, STDOUT, or STDERR. The newline character is
returned as part of a line readdpgt | i ne() . The maximum size of a line
(size of a line bdér) is set at compile time by the system wide constant
SZ_LI NE.getline() reads at mos$Z_LI NE characters.dread more
in one call, usget | | i ne() which includes an gument specifying how
many characters to read.

Pushback

Characters and strings (and even binary data) maydhed back into
the input streamunget c() pushes a single charact8ubsequent calls to
getc(),getline(),read(), etc. will read out the characters in the
order in which they were pushed (first in, first out). When all of the
pushback data have been read, reading resumes at the preceding file
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position, which may either be in one of the primaryfénsf or an earlier
state in the pushback e

Procedure Call Purpose

ungetc (fd, char) Push back a char
ungetline (fd, string) Push back a string
unread (fd, buf, nchars) Push back binary data

Table 2.44: Pushback Text Functions.

unget s() differs fromungetc() in that it pushes back whole
strings, in a last in, first out fashioanget s() is used to implement
recursive macro expansions. The amount of recursion permitted may be
specified after the file is opened, and before any data are pushed back.
Recursion is limited by the size of the input pointer stack, and pushback
capacity by the size of the pushbackfeuf

Filename Templates

The filename template package contains routines to expand a filename
template string into a list of filenames, and to access the individual
elements of the list. It is primarily a convenience for users to allow
wildcards in filenames and pointers to files containing lists of names. The
template is a list of filenames, patterns, or list flenames. The concatenation
operator (/) may be used within input list elements to form new output
filenames. String substitution may also be used to form new filenames.

A sample template string is:
al pha, *.x, data* // .pix, [a-mM*, @ist_file

This template would be expanded as the &lepha, followed in
successive calls by all the files in the current directory whose names end in
. X, followed by all files whose names begin wdit a with the extension

. pi X appended, and so on. T@haracter signifies a list file. That is, a
file containing regular filenames.
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String substitution uses the first string given for the template, expands
the template, and for each filename generated by the template, substitutes
the second string to generate a new filename. Some examples follow

Sample String Performs Function
O %y Change the extension yo
*98b abc% i mh Append_abc tor oot
nite%d%2% 1024. i mh Changeniteltonite2

Table 2.45: String Substitution Characters.

The following procedures (with b sufix) are the highest level and
most convenient to use.

Procedure Call Purpose
fntopnb (tenplate, sort) Expand template and open a
buffered filename list
status = fntgfnb (list, fname, Get next filename from bigfred
maxch) list (sequential)
status = fntrfnb (list, index, Get next filename from bigred
f nane, maxch) list (random)
fntclsb (list) Close bufered list
num = fntlenb (list) Get number of filenames in a
buffered list
fntrewb (list) Rewind the list

Table 2.46: High-Level Template Functions.
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The remaining lower level routines expand a template on the fly and do
not permit sorting or determination of the length of the list.

Procedure Call Purpose
fntopn (tenpl ate) Open an unbtdéred filename list
fntgfn (pp, outstr, maxch) Get next filename from

unbufered list

fntcls (pp) Close unbutred list

Table 2.47: Low-Level Template Routines.

2.6

Vector (Array) Operators — vops

The vector operatov¢ps) procedures implement common operators
for arrays of most supported SPP data types. Thelaatespecifian the
sense that they may take advantage of specialized hardware and software
available on a particular system such as vector processors and vectorizing
compilers. This would substantially improve the performance of
computationally intensive tasks dealing withglararrays such as images.
Nevertheless, the interface to SPP (the calling sequence) is independent of
the underlying architecture.

Each section below describes a familyvops operatorsrelated by
functionality Each operator (procedure) is implemented with the same root
name and calling sequence for several data types. Hqwewetrall
operators are implemented (nor do they make sense) for every data type.
The tables list the root procedure name, implemented data types, calling
sequence, and description of the operation. All of the functions require an
i nt agument that specifies the number of elements in the passed vector or
vectors. If the procedure requires more than one vettey are assumed
to have the same number of elements. In nearly every case, multiple array
arguments tovops procedures are also the same data type. A significant
exception isacht TT(), which converts a vector of one data type to
another vector of a dérent data type.

All vector operations may be performedplace That is, the same array
may be used on input as well as output. An array passed to a vector
procedure need not be one-dimensional. In all cases, the vectors are treated
simply as contiguous words. Since there is assumed to be no functional
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relationship among the pixel positions in the vectors, arrays of any
dimensionality may be passed. Only the total number of pixelsin the array
need be passed to the vops procedure. Many procedures are implemented
for the case of two vectors or a vector and a scalar. In the latter case, the
procedure name has ak inserted before the last character (the initia of the
datatype) and one argument must be a constant or scalar variable.

Arithmetic Operators

These procedures implement basic arithmetic operations. The binary
operators (add, subtract, multiply, and divide) include operations between
two vectors or between a vector and a scalar. In the former case, each
element of the output vector is the result of the operation on the
corresponding elements of the input vectors. In the second case, each
element of the output vector represents the result of the operation between
the corresponding element of the input vector and the same scalar.

Procedure Call Purpose
anegT (a, b, npix) Negate avector b; = g
aaddT (a, b, c, npix) Addtwo vectors ¢; = a, + b,
aaddkT (a, k, ¢, npix) Add avector and ascalar ¢; = a, +k
asubT (a, b, c, npix) Subtract two vectors ¢; = a, — b
asubkT (a, k, ¢, npix) Subtract a scalar from a vector
¢ =a-k
amul T (a, b, c, npix) Multiply two vectors ¢; = a;b,
amul KT (a, k, ¢, npix) Multiply avector and ascalar ¢; = ak
adivT (a, b, c, npix) Dividetwo vectors ¢; = a;/b,
adi vkT (a, k, ¢, npix) Divide avector by ascalar ¢; = a/k
advzT (a, b, c, npix, errfcn) Vector divide, detect divide by zero

c = alb,

Table 2.48: Arithmetic Functions.

Each of these procedures is implemented for the following data types:
short, int, long, real, double, and conpl ex. To use the
appropriate data type, replace T with the representative of the data type
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name,anul r () oraaddki (), for example. Most of these are the first
character of the data type, except tmnpl ex, whose representative
character ix. The last proceduradvzT( ) , implements dividing vectors,
but upon dividing by zero it callsr r f cn() , supplied by the application
as an external function.

Bitwise Boolean operators

These procedures perform boolean operations on integer arrays,
returning the same type result. The resulting vector is the result of the
boolean operation on each bit of each element of the arrays.

Procedure Call Purpose
anotT (a, b, npiix) NOT of a vector
aandT (a, b, c, npix) AND of two vectors
aandkT (a, b, ¢, npix) AND of a vector and a scalar
aborT (a, b, c, npix) OR of two vectors
aborkT (a, b, ¢, npix) OR of a vector and a scalar
axorT (a, b, c, npix) XOR (exclusive or) of two vectors
axorkT (a, b, c, npix) XOR of a vector and a scalar

Table 2.49: Bitwise Boolean Operators.

All of the above procedures are implementaty for the integer data
types:short,i nt, andl ong.
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Logical Comparison

These procedures return amt array containing the result of the
logical comparison between elements of the input vectors. If the result of
the comparison isr ue, the value in the vector is one, otherwise, it is zero.

Procedure Call Purpose
abeqT (a, b, ¢, npix) a, = b?
abegkT (a, k, c, npix) a = k?
abgeT (a, b, c, npix) a; 2h;?
abgekT (a, k, c, npix) a; 2k?
abgtT (a, b, ¢, npix) a;>bk?
abgtkT (a, k, c, npix) a;>k?
ableT (a, b, ¢, npix) a; <h?
abl ekT (a, k, c, npix) a;<k?
abltT (a, b, c, npix) a;<b?
abltkT (a, k, c, npix) a;<k?
abneT (a, b, ¢, npix) a;#b,?
abnekT (a, k, c, npix) a; # k?

Table 2.50: Logical Comparison Functions.

All of the above are implemented for the range of SPP data types:
char, short, int, | ong, real, doubl e, and conpl ex. Note,
however that the output vectoe is always am nt array

Fundamental Array Operators

These procedures implement various basic array operations. The
acht TT() procedure is unique in that the input and output vectors are of
different data types. It requires two data type specifigfsr(the input and
output vectors.
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Function Data Type Parameters

Purpose

anmovT csilrdx (a, b, npix) Move (copy or shit) avector
anovkT csilrdx (k, b, npix) Move a scalar into a vector

aclrT bcsi | rdx (a, npix) Clear (zero) avector

acht TT ubcsilrdx (a, b, npix) Change datatype of a vector

Table 2.51: Fundamental Array Operators.

All of the above are implemented for the full range of SPP data types:
char,short,int,long,real, doubl e, and conpl ex. In addition,
achTT() isimplemented for unsigned byte b and unsigned short u types.
These are used primarily in low-level image 1/0 (imio) code. acl r T() is

also implemented for byte.
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Algebraic Operators

These procedures implement various functions. The log and square root
functions include an external function passed to the procedure that sets the
returned value in the case of an invalid function result sughlas

Procedure Call Definition

aabsT (a, b, npix) Absolute value b= |3

anbdT (a, b, ¢, npix) Modulus of two vectors

anodkT (a, k, c, npix) Modulus of a vector and a scalar
apowl (a, b, c, npix) Vector to an integer vector power= aibi
apowkT (a, k, ¢, npix) Vector to an integer scalar power= aik
aexpTt (a, b, c, npix) Vector to a real vector exponent= aibi
aexpkT (a, k, c, npix) Vector to a real scalar exponent= a:‘
arcpT (a, k, ¢, npix) Reciprocal of a scalar and a vectpr= k/a,
arczT (a, k, c, npix, errfcn) Reciprocal, detect divide by zeep= kia,
allnT (a, b, npix, errfcn) Natural logarithmb; = In' a,

alogT (a, b, npix, errfcn) Common logarithnb, = loga,

asqrT (a, b, npix, errfcn) Square roob, = ﬁi

amagT (a, b, ¢, npix) Magnitude of vectors; = (ai2+bi)l’2
amgsT (a, b, c, npix) Magnitude squared of vectoes = a2 + b?

Table 2.52: Algebraic Operators.

All of these procedures are implemented for the data tygtesrt ,
int, long, real, doubl e, and conpl ex, except the modulus
functions anodT() and anmodkT(), which are not implemented for
conpl ex.
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Complex Operators

These procedures involve complex operators, but involve not only
conpl ex aguments.

Procedure DataType Arguments Function

acjgT X (a, b, npix) Complex conjugate of a
complex vector

ai ngT silrd (a, b, npix) Imaginary part of a
complex vector

aupxT si | rdx (a, b, ¢, npix) Unpack the real and
imaginary parts of a
complex vector

apkxT silrds (a, b, ¢, npix) Pack a complex vector
given the real and
imaginary parts

Table 2.53: Complex Operators.

acj gT() is implemented only forconpl ex arrays. The first
argument taai ngT() andaupxT() must be a&onpl ex array The last
argument tcaupxT() must be a&onpl ex array
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Fourier Transforms

Procedure Arguments Transform Type

afftrr (sr, si, fr, fi, npix) Forward real Fourier transform,
real arrays

afftrx (a, b, npix) Forward real Fourier transform,
complex output

af ft xr (sr, si, fr, fi, npix) Forward complex Fourier
transform, real arrays

af ft xx (a, b, npix) Forward complex Fourier
transform, complex arrays

aiftrr (sr, si, fr, fi, npix) Inverse real Fourier transform,
real arrays

ai ftrx (a, b, npix) Inversereal Fourier transform,

complex output

ai ftxr (sr, si, fr, fi, npix) Inverse complex Fourier
transform, real arrays

ai ftxx (a, b, npix) Inverse complex Fourier
transform, complex arrays

Table 2.54: Fourier Transforms.

The transform may be performed in place. The size of the arrays must
be a power of two.
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Transformations

Function DataTypes Parameters Purpose
agltT csilrdx (a, b, npix, |ow, high, General piecewise linear
kmul , kadd, nrange) transformation
altrT si | rdx (a, b, npix, ki, k2, Linear transformation of a vector
k3) by = (& +k) xk,
altaT si | rdx (a, b, npix, ki1, k2) Linear map vector to vector
by = (& +kp) xk;
al tmr si | rdx (a, b, npix, ki1, k2) Linear map vector to vector
by = ak, +k,
amapT silrd (, b, npix, al, a2, bi, Linear mapping of avector with
b2) clipping
alui T silrd (a, b, x, npix) Vector lookup and interpolate
(linear)
alutT csil (a, b, nchar, lut) Vector transform via lookup table

Table 2.55: Transformations.
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Miscellaneous Procedures

Function DataType Parameters Purpose
am nT csilrdx (a, b, c, npix) Vector minimum of two vectors
am nkT csil rdx (a, b, c, npix) Vector minimum of a vector and a
scalar
amaxT csilrdx (a, b, c, npix) Vector maximum of two vectors
amaxkT csilrdx (a, b, c, npix) Vector maximum of a vector and a
scalar
aned3T csilrd (a, b, c, nmed, npix) Vector median of three vectors
anmed4T csilrd (a, b, c, d, med, npix) Vector median of four vectors
aned5T csilrd (a, b, c, d, e, nmed, npix) Vector median of five vectors
arltT si | rdx (a, npix, floor, newal) Vector replace pixel if < scalar
argtT silrdx (a, npix, ceil newal) Vector replace pixel if > scalar
asel T csilrdx (a, b, c, sel, npix) Vector select from two vectors
based on boolean flag vector
asokT csil rdx (a, npix, ksel) Selection of thét" smallest
element of a vector
acnvT silrd (a, b, npix, kernel, kpix) Convolve two vectors
acnvrT silrd (a, b, npix, kernel, kpix) Convolve a vector with a real
kernel
asrtT csil rdx (a, b, npix) Sort a vector in increasing order
abavT silrdx (a, b, nblocks, npix_block) Block average a vector
absuT silrd (a, b, nblocks, npix_block) Block sum a vector
awsuT si | rdx (a, b, c, npix, ki1, k2) Weighted sum of two vectors
C; = ki + k)b,
ahgnir csilrd (a, npix, hgm nbins, z1, Accumulate the histogram of a
z2) series of vectors

Table 2.56: Miscellaneous Procedures.
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Scalar Results

These procedures return a scalar value from computation upon a vector
In most cases, the data type of the function, vector or vectors, and the
returned value must match. Exceptions aravt () andawgt (), in
which the returned value is the number of points remaining in the sample
after rejection.

Procedure Call Data Types Parameters Purpose
hival = ahivT csilrdx (a, npix) Compute the high (max)
value of a vector
loval = alovT csilrdx (a, npix) Compute the low (min)
value of a vector
alimr csilrdx (a, npix, mnval, Compute the limits (min
maxval ) and max) of a vector
dot = adotT silrdx (a, b, npix) Dot product of two vectors
> ab;
aavgT silrdx (a, npix, nean, Mean and standard
si gna) deviation of a vector
ngpi x = aravT silrdx (a, npix, nean, Mean and standard
sigma, ksig) deviation of a vector with

pixel rejection (mean and
sigma are floating point)

ngpi x = awgT silrdx (a, npix, nean, Mean and standard
sigma, |cut, hcut) deviation of a windowed
vector (mean, sigma, Icut
and hcut are floating point)

med = anedT csilrdx (a, npix) Median value of a vector

ssqrs = assqT silrdx (a, npix) Sum of squares of a vector
aZ (returns floating
point results)

sum = asumrl silrdx (a, npix) Sum of a vectory a,
(returns floating point
results)

y = apolT rd (x, coeff, ncoeff) Polynomial evaluation
Zaixl—l

Table 2.57: Scalar Results.
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2.7

Vector Graphics — gio

The gio package allows an IRAF application written in SPP to draw
graphics without regard to the ultimate plotting device. There is a complete
description in the documer@raphics I/O Design [Tody84b] available
using thehel p command in the chel p gi o$doc/ gi o. hlp fi+.

Here we primarily list the procedures, their calling sequences and a brief
description of their function. Thgto library allows a task to draw graphics
with relatively little regard for specific graphics hardware. Nevertheless,
some features are rather dependent on particular device characteristics.

High-Level Plotting Procedures

There are two procedures that allow an application to simply draw a
graph using a set of data.

Procedure Call Purpose
gplotv (v, npts, x1, x2, title) Complete plot
gploto (gp, v, npts, x1, x2, title) Plot a vector

Table 2.58: Graph Drawing Functions.

gpl ot v is completely self-contained. The application simply passes an
array of real values in theqarmentv and the number of elements in the
array innpts. The agumentsx1l andx2 may be used to specify the
X-axis values to assign to the first and last elements of the data vector
Finally, the agumentt i t | e is a character string plotted at the top of the
graph. This may be specified as EOS, a null string, in which case no title is
plotted. Note thagpl ot v() does not require the graphics descriptor
argument gp here). Opening and closing graphics are done entirely within
the procedure. On the other hagg) ot o() does require the descriptor
That is, the graphics must have been openegbipen() (see below). All
othergio procedures require the graphics descriptgumentgpl ot o()
therefore permits more flexibility in resetting default plotting parameters.
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Setup

These procedures enable graphics to be written to a particular device
and control such operations as clearing the device (starting a new frame or

page).

Procedure Call Purpose
gp = gopen (device, node, fd) Open graphics

gcl ose (gp) Close graphics
gdeactivate (gp, flags) Deactivate graphics workstation
greactivate (gp, flags) Activate graphics workstation
gcancel (gp) Discard bufered graphics output
gf lush (gp) Flush bufered graphics output
gcl ear (gp) Clear and reset the workstation
gfrane (gp) Advance the frame
greset (gp, f) Reset graphics state
gnftitle (gp, netafile_title) Comment metacode
gpagefile (gp, fname, pronpt) Page a file

Table 2.59: Graphics Device Setup Functions.

Note the distinction between thegaments togopen(). The first is a
string specifying the device on which to plot. This is most often coded
using a string assigned from a cl parameter to be assigned by thEhgser
second agument is th@io I/O mode, analogous to the fio I/O modes. This
is usually coded using a parameter consthBW FI LE will initialize
graphics, erasing the screen or starting a new page APHEND will not
initialize graphics but will use the scaling and other parameters from the
most recent graph (as long as the graphicebw¥as not flushed). The
final parameter is thgraphics streamto use for the graphics metacode out-
put. There are three streams specified using defined parameter constants:
STDGRAPH, STDPLOT, andSTDI MAGE. The streams behave identically
but are resolved separately in disposing of the final plot. Exariple
briefly demonstrates the most common way of opening graphics:
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char devi ce[ SZ_LI NE] # Devi ce nane

bool append # Append?

i nt node # G aphics 1/ 0 node

poi nter gp # Graphics 1/ 0O descriptor
poi nt er gopen()

bool cl getb()

call clgstr ("device", device, SZ LINE)
if (clgetb ("append"))
node = APPEND
el se
node = NEW FI LE
gp = gopen (device, node, STDGRAPH)

Example 2.27: Opening Graphics.

Graphics Parameters

There are a number of interrgab parameters that can be set in an SPP
task. These control such aspects of the plot such as line width and text
format. The system include fikggset . h> must bel ncl uded to allow
reading or writing these parameters. It is also possible to,duérgot set,
certain attributes of the specified graphics device.

Procedure Call Purpose
gsetT (gp, param val ue) Set graphics parameter
val = gstaT (gp, paran) Query numeric graphics parameter
nchar = gstats (gp, param Query string graphics parameter
outstr, maxch)
val = ggetT (gp, devcap) Query numeric device parameter
nchar = ggets (gp, devcap, Query string device parameter

outstr, maxch)

Table 2.60: Graphics Parameter Control Functions.

Use gset T() to set the value of a parameter amgskt at T() to
inquire its value. Note the distinction between these procedures and the
gget T() procedures to query device characteristics fromgtiaphics
capabilities (gr aphcap) file. gset T() is implemented for nt, r eal ,
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andst ri ng data typesgst at T() is implemented for nt, andr eal
data types, andget T() is implemented fobool , i nt, andr eal data

types.

Scaling

These procedures deal with plot scaling. There are two fundamental
coordinate systems used gyo: normalized device coordinates or NDC,
whose range is always 0:1 in both directions regardless of the device, and
the world coordinate system or WCS, defined by the application and
corresponding to the userdata coordinates.

Procedure Call Purpose

gsview (gp, x1, x2, yl, y2) Set NDC viewport
ggview (gp, x1, x2, yl, y2) Get NDC viewport

gswi nd (gp, x1, x2, yl, y2) Set WCS window

ggwi nd (gp, x1, s2, yl, y2) Get WCS window
gascale (gp, v, npts, axis) Set absolute WCS scale
grscale (gp, Vv, npts, axis) Set relative WCS scale
ggscale (gp, x, y, dx, dy) Get WCS scale

gctran (gp, x1, yl, x2, y2, wesl, wes2) Transform coordinates

gcurpos (gp, X, Y) Get current pen position

Table 2.61: Plot Scaling Functions.

NDC is associated with WCS usimgsvi ewm ) andgswi nd() to
establish the plot scale. This may also be accomplished for a given set of
data usinggascal e() orgrscal e().

Drawing

The usual graphics primitives are availablegin such as basic pen
moves and draws, line, markeolyline, polymarkerand text drawing.
The coordinates in every case are assumed to be in world coordinates
(WC).
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Procedure Call Purpose

ganove (gp, X, V) Pen up move in absolute WC
grnove (gp, X, V) Pen up move in relative WC
gadraw (gp, X, V) Pen down move in absolute WC
grdraw (gp, X, V) Pen down draw in relative WC

Table 2.62: Pen Movement Primitives.

Move and draw may be absolute or relative to the last pen position.

Procedure Call Purpose

gline (gp, x1, y1, x2, y2) Draw a line

gpline (gp, X, y, npts) Draw a polyline

gvline (gp, v, npts, x1, x2) Vector a polyline

gtext (gp, X, y, text, format) Draw text

gfill (gp, X, y, npts, style) Area fill

gl abax (gp, title, xlabel, ylabel) Draw labeled axes

gmark (gp, X, y, marktype, xsize, ysize) Draw a marker

gpmark (gp, X, Yy, npts, narktype, xsize, Draw a polymarker
ysi ze)

gvmark (gp, v, npts, x1, x2, marktype, Vector a polymarker

Xsi ze, ysize)

gumark (gp, X, y, npts, xcen, ycen, Xxsize, Userdefined marker
ysize, fill)

Table 2.63: Drawing Primitives.

gpline() and gpmark() take two vectors, with the X and Y
coordinates of each point, whigerl i ne() andgvrar k() take a single
vector of Y coordinates, and the X coordinates are evenly distributed along
the X-axis, ranging fromx1l at v[ 1] to x2 at v[npts] in WCS
coordinates.
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Procedure Call Purpose

gpcell (gp, m nx, ny, x1, yl1l, x2, y2) Draw a cell array
ggcell (gp, m nx, ny, x1, yl, x2, y2) Reada cellarray

Table 2.64: Cell Array Primitives.

A cdl array is a gray-scale image. It is up to the graphics kernels
(device drivers) to support capabilities such as drawing cell arrays or filled
polygons. Most of the kernels do not support these.

Cursor Interaction

IRAF supports cursor read back through the cl so that a task may query
the cursar See “Interactive Graphics Cursor” on p&defor a slightly
more complete description of cursor interaction.

Procedure Call Purpose

gscur (gp, X, V) Move device cursor
stat = ggcur (gp, X, Yy, key) Get cursor position
clgcur (param wx, wy, wcs, key, Graphics cursor

strval, maxch

Table 2.65: Cursor Interaction Functions.

Note thatcl gcur() is a clio procedure, not aio procedure.
Therefore, it does not require the graphics descripgunaent. Not all
devices support moving the cursor from host softwargssur () may
not have any ééct.

2.8

Terminal I/O — tty

The tty interface is a table driven, device independent interface for
controlling terminal and printer devices. Devices are described either by
environment definitions, or by an entry in ttig database file. Th&y
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database file is the standard Berkeley Upmcap terminal capability
database file (a text file), to which have been added entries for local printer
devices. Accessing the Untiber ntap file directly without modification is
sometimes awkward, but the benefits of accessing a widely used, standard
database more than compensate for any clumsiness.

When the cl starts up, the following environment variables are defined
to describe the default terminal and printer devices. The user may
subsequently change the values of these variables witdethstatement
or with thest t y program.

Variable Contents

printer Default printer (e.gver sat ec)

term nal Default terminal (e.gyt 100, t ek4012)
terncap Terminal or printer database filename
ttybaud Baud rate, default 9600

ttyncol s Number of characters per line
ttynlines Number of lines per screen

Table 2.66: TTY Environment Variables.

The variables defining the names of the default terminal and printer
devices will normally correspond to the names of device entries in the
termcap file. The name of a file containing a singlentap entry for the
device may optionally be given; the filename must contain a virtual
filename (VFN) or operating system filename (OSFN) directory prefix to
be recognized as a filename. The default termcap fdevs$t er ncap.
Terminal initialization files (used to set tab stops) are files of the form
dev$tty. t bi, where tty is the last field of the Unix pathname in the if
termcap entrylf the first character of the if flename string is not a /, an
IRAF VFN should be given.

The value strings for the environment variabkesyncol s and
ttynli nes, defining the screen dimensions, are extracted from the
terncap file by the stty program during start-up. The screen
dimensions are defined in the environment for two reasdienty, and
if a window is used, the logical screen dimensions may be less than the
physical screen dimensions. Most applications programs should therefore
useenvgeti () rather thartt ygeti () to get the screen dimensions.
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ttygeti () returns the physical screen dimensions as given in the
t er ncap file.

Open and Close

Before any tty control sequences can be output, thaettice descriptor
must be read from the termcap file into aféwuffor eficient access.
ttyodes() is used to open theey descriptor;tt ycdes() should be
called when done to close the descripteturning all buer space used. If
ttyname is term nal or printer, the descriptor for the default
terminal or printer is accessed.

Procedure Call Purpose
tty = ttyodes (ttynane) Open tty descriptor
ttycdes (tty) Close tty

Table 2.67: TTY Open and Close Functions.

Low Level Database Access, TTY Control

The ttyget () procedures are used to get capabilities from the
database entryf the named capability is not foundt, ygeti () returns
zero,t t yget b() returns false, antlt yget s() returns the null string.
ttysubi () performs agument substitution on a control sequence
containing at most two integergaiments (such as a cursor motion control
sequence), generating an output sequence suitable for input to
ttyputs().ttyputs() puts the control sequence to the output file,
padding as required given the number &¢eted lines. The baud rate and
pad characterused to generate padding, are evaluatett gtodes()
time and are conveyed ta yput s() in the tty descriptor
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Procedure Call Purpose

value = ttygett (tty, cap) Get a numeric parameter

nchars = ttygets (tty, cap, outstr, naxch) Get a string parameter

ttyputs (fd, tty, ctrlstr, afflncnt) Puta string parameter

ttysub (ctrlstr, outstr, maxch, argl, arg2)

Table 2.68: Low-Level TTY Database Functions.

ttygett () isimplemented fornt,real , andbool data types.

High-Level Control

Procedure Call Purpose

stat = ttyctrl (fd, tty, cap, afflncnt) Output a control sequence

ttyso (fd, tty, YES|NO Turn standout mode on orfof

ttygoto (fd, tty, col, line) Move cursor absolute

ttyinit (fd, tty) Send:isand:if,if
defined

ttyclear (fd, tty) Clear screen

ttyclearln (fd, tty) Clear the current line

ttyputline (fd, tty, textline, map_cc) Put a text line

Table 2.69: High-Level TTY Functions.

ttyctrl () callsttygets() andttyputs() to process and
output a control sequence (slightly lesicegntly than if the control string
is bufiered by the user codd)t ygot o() moves the cursor to the desired
column and linet t yput | i ne() is like the fioput | i ne() , except that
it processes any form feeds, standout mode directives, and other control
characters (including tabs) embedded in the text. Lines longer than
tt yncol s are broken into several output lines.yput | i ne() is used
by thehel p, page, type, andl pri nt utilities to map tabs and standout
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mode directives for a particular output device. Standout mode is mapped as
reverse video on most V3Tand as underscore on most printers and on
overstrike terminals such as thekironix 4012.

Bit & Byte Operations — osb

Byte and Character Conversions

Procedure Call Purpose

strpak (str, os_sttr, naxch) Pack OS string

strupk (os_str, str, maxch) Unpack OS string

chrpak (a, a_off, b, b_off, nchars) Packchar

chrupk (a, a_off, b, b_off, nchars) Unpackchar

bit pak (ival, wordp, offset, nbits) Pack an integer into a bitfield
bi tupk (wordp, offset, nbits) Unpack an unsigned integer bit field
bitnmov (a, a_off, b, b_off, nbits) Move a sequence of bits
bytnov (a, a off, b, b_off, nbytes) Move bytes

bswaps (a, b, nshorts) Byte swapshor t

bswapl (a, b, nlongs) Byte swap ong

Table 2.70: Byte and Character Conversions.

chars are signed integers, whereas bytes as unsigned integers. The
bswapT() routines are used to swap bytes in short and long integer
arrays, as is sometimes required when transporting data between machines.
Themii package is available for conversions between a machine indepen-
dent integer format and the SPP data types (documented elsewhere). See
“Binary File I/O” on paged8 for an example of extracting individual bytes
from a word.
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Character Comparisons
The following are macro functions defined in the system include file

ct ype. h. The statement

i ncl ude <ctype. h>

must be in the code in order to use them.

Procedure Call Purpose

bool = IS UPPER (char) Upper case?

bool = IS LONER (char) Lower case?

bool = IS D AT (char) Numeral?

bool = IS PRINT (char) Printable character?

bool = IS CNTRL (char) Control Character?

bool = IS ASCI| (char) 7-bit ASCII character?

bool = IS ALPHA (char) Letter (either case)?

bool = IS _ALNUM (char) Alphanumeric character?

bool = IS WH TE (char) White space character?

char = TODI AT (char) Convert integer to char
int = TO_ I NTEG (char) Convert digit to integer

char = TO UPPER (char) Convert to upper case

char = TO LOAER (char) Convert to lower case

Table 2.71: Character Comparison Functions.

These are macro definitions, not procedures (they produce in-line code
and need not be declared@P UPPER() andTO LOWER() must only be
applied to letters of the proper case (use the procedurespr (),
chrlwr () otherwise).

Pack and Unpack Characters

These procedures convert between SPP character sgmgst( i nt
arrays) and packed byte blocks, i.e., a sequence of characters stored one per
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byte, delimited byeOS (ASCIlI NUL). The conversion may be performed
in-place. That is, the input and output arrays may be the same.

Procedure Call Purpose
strpak (instr, outstr, maxch) Pack an SPP string into bytes
strupk (instr, outstr, maxch) Unpack an SPP string from bytes

chrpak (a, aoff, b, boff, nchars) Packchars into bytes

chrupk (a, aoff, b, boff, nchars) Unpack chars from bytes

Table 2.72: Pack and Unpack Functions.

Fortran Strings

There are two procedures that convert between SPP and Fortran
character stringst 77pak() converts an SPP string to a Fortran string
andf 77upk() converts a Fortran string to an SPP string. An example is
shown in Exampl@.28.

Procedure Call Purpose
f77pak (spp, f77, maxch) Convert SPP string to Fortran string
f77upk (F77, spp, maxch) Convert Fortran string to SPP string

Table 2.73: SPP/Fortran String Conversion.

# Declare the Fortran string

% character*8 fstr
# Declare the SPP string

char sstr[ 8]

# Convert the SPP string to a Fortran string
call f77pak (sstr, fstr, 8)

# Call the fortran subroutine

call forsub (fstr, ...)

Example 2.28: Converting Fortran/SPP Strings.

Note theescaped Fortran statement, preceded dySee also “Fortran
statements” on pagé
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Machine Independent I/O — mii

The mii integer format provides for three machine independent integer
data types and two IEEE floating point formats.

Data Type Type of Number

M1 _BYTE 8-bit unsigned byte

M | _SHORT 16-bit twos-complement signed integer
M | _LONG 32-bit twos-complement signed integer
M |1 _REAL 32-bit IEEE floating point

M | _DOUBLE 64-bit IEEE floating point

Table 2.74: Machine-Independent Integer Data Types.

These types are defined in the system includenfile. h  which must
be included if usingnii. Themii data types are the same as are used in the
FITS transportable image format. In the case of the short and long integers,
the most significant bytes of an integer are given first.

The routines in this package are provided for converting to and from the
mii format and the SPP format. The latter format, of course, is potentially
guite machine dependent. The implementation given here assumes that the
SPP data types include 16-bit and 32-bit twos-complement integers; the
ordering of the bytes within these integer formats is described by the
machine constan8YTE_SWAP2 andBYTE_SWAP4. Byte swapping for
the IEEE floating formats is defined by the machine constants
| EEE_SWAP4 andl EEE_SWAPS.

Procedure Call Purpose

mipak (spp, mi, nelens, spptype, Pack an SPP array into an mii array
nmitype)

miupk (mi, spp, nelems, niitype, Unpack an mii array into an SPP array
spptype)

nchars = mipksize (nelens, mitype) Size ¢hars) of the SPP array required

to store mii
nel em = minelem (nchars, mitype) Number of mii elements in an SPP array

Table 2.75: Machine-Independent/SPP Conversion Functions.
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Note the distinction in the above table between the size of an mij array
specified as the number of array elements and the size of the S&P buf
specified as the number of SPP chars. The following example illustrates
reading ammii binary file consisting of byte (eight bit unsigned) values:

include <mi.h>

i nt rf # Rasterfile file descriptor

i nt nel em # Nunber of nmii elenents
pointer rpm rps # Rasterfile buffer descriptor
i nt nchar # SPP size of mi array

i nt read(), mipksize()

begin

nchar = mipksize (nelem M| _BYTE)
# Al locate buffer for reading mi data
call malloc (rps, nchar, TY_SHORT)
# Al locate SPP data array
call malloc (rpm nelem TY_CHAR)
# Read the file
if (read (rf, Ment[rpn], nchar) != nchar)
call error (0, "Could not read input file")
# Unpack the data
call miupk (Menc[rpni, Mens[rps], nelem MI_BYTE, TY_SHORT)

call nfree (rpm TY_CHAR)
call nfree (rps, TY_SHORT)
end

Example 2.29: Reading an mii Binary File.

2.10

Pixel Lists — plio

The pixel list package is a general package for flagging individual pixels
or regions of an image, to mark some subset of the pixels in an image. This
may be done to flag bad pixels, or to identify those regions of an image to
be processed by some applications program. When the pixel list package is
used to flag the bad pixels in an image we call tHwadapixel mask, or
BPM. When used to identify the regions of an image to be processed (or
ignored), the list is calledragion mask. The documerixel List Package
Design [Tody88] fully describes the details of the pixel list package. Here
we only summarize and present a brief example. Exathpl: opens a
data image and the associated mask image, and sums the pixels within the
area indicated by the mask.
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i ncl ude <pnset. h>

t ask sum =t _sum
# SUM -- Sumthe image pixels lying within the given nask

procedure t_sun()

char i mage[ SZ_FNAME] # I nput data inmage
char mask[ SZ_FNAME] # i mage mask
i nt npi x, mval, totpix, nflags

| ong v[ PM_MAXDI M
pointer im np, pp

r eal sum
bool cl getb()
real asunt ()
i nt m o_gl segr()
poi nter immap(), m o_open()
begin
call clgstr ("image", inmage, SZ_FNAME)
call clgstr ("mask", mask, SZ FNAME)
mflags = 0
if (clgetb ("invert"))
m fl ags = | NVERT_MASK
im=immp (inmge, READ ONLY, 0)
nmp = mo_open (mask, mflags, im
sum= 0; totpix =0
whi (mo_glsegr (np, pp, nval, v, npix) != EOF) {

e
um = sum + asunr (Menr[pp], npix)
otpix = totpix + npix

call mo_close (np)

call imunmap (im

call printf ("% pixels, sunr%g, nean=%g\n")
call pargi (totpix)
call pargr (sum

if (totpix > 0)
call pargr (sum/ totpix)

el se
call pargr (I NDEF)

end

Example 2.30: Opening Data Image and Associated Mask.

A more complex application might use the spatial information provided
by v andnpi x, or the flag values provided byal (for an integer mask).
For example, a surface fitting routine would accumulate each line segment
into a least squares matrix, using the coordinate information provided as
well as the pixel values.



World Coordinates — mwcs 129

2.11

World Coordinates — mwcs

The mini-World Coordinate Systemmiwcs) interface is a package of
procedures to handle the general problem of representing a linear or
nonlinear world coordinate system (WCS). It may be used for determining
the coordinates of pixels in an image, for example. Of course, enough
information must be available to perform the appropriate coordinate
transformations. While the interface is designed with the typical
application to image data in mindpwcs is intended as a general
coordinate transformation facility for use with any type of data, as an
embedded interface in other software, including system interfaces such as
imio andgio as well as user applications. Tinevcs package is referred to
as a prototype since some functionality is missing.

* All WCS functions are built in (hard coded), hence the interface is not
extensible at runtime and the only way to support new applications is
through modification of the interface (by adding new function drivers).

» There is no support for modeling geometric distortions, except possibly
in one dimension.

» There is no provision for storing more than one world coordinate system
in FITS oriented image headers, although multiple WCS are supported
internally by the interface, and are preserved and restored across
mv_save() andmw_| oad() operations.

» Coordinate transforms involving dependent axes must include all such
axes explicitly in the transform. Dependent axes are axes which are
related, either by a rotation, or by a WCS function. Operations which
could subset dependent axis groups, and which are therefore disallowed,
include setting up a transform with an axes bitmap which excludes
dependent axes, or more importajdy image section involving dimen-
sional reduction, where the axis to be removed is not independent. This
could happen, for example, if a two-dimensional image were rotated and
one tried to open a one-dimensional section of the rotated image.

For a more detailed discussion of the mwcs implementation and
coordinate transformations in general, refer to the documdemtWCS
Interface [Tody89], also available on-line gys$mamcs/ MACS. hl p. Use
the help facility in the IRAF cl to read or print it.
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Coordinate Systems

Themwecs package defines three coordinate systems between which two
transformations are performed. The three coordinate systems are defined as
follows:

» Physical - The physical coordinate system is the raw coordinate system
of the data. In the case of an image, the physical coordinate system
refers to the pixel coordinates of the original data frame. All other coor-
dinates systems are defined in terms of the physical system (reference
frame).

* Logical - The logical coordinate system is defined by lttegm (see
below) in terms of the physical coordinate system. In the case of an
image, the logical coordinate system specifies raw pixel coordinates rel-
ative to some image section or derived image, i.e., the coordinates used
for image 1/O. In thenwcs the Lterm specifies a simple linear transfor-
mation, in pixel units, between the original physical image matrix and
the current image section.

 World - The world coordinate system is defined by Werm (see

below) in terms of the physical coordinate system. Any number of dif-
ferent kinds of world coordinate systems are conceivable. Examples are
the tangent (gnomonic) projection, specifying right ascension and decli-
nation relative to the original data image, or any linear WCS, e.g., a lin-
ear dispersion relation for spectral data. Multiple world coordinate
systems may be simultaneously defined in terms of the same physical
system.

The coordinate systems are referred to by the stnoigssi cal ,
| ogi cal , andwor | d. Note that there may be many Wterms specified for
any one WCS. Thevorld system refers to the current Wterm defined.
Other Wterms are referred to by usepplied names (see
mv_newsysten()) and can be made the -current system by
mwv_ssyst em() . The two transformations are specified by the Lterm and
the Wterm. The Lterm specifies a linear transformation between the
physical and logical coordinate systems. The Wterm specifies the
transformation between the physical and world coordinate systems The
general flow of transforming coordinates is:

1. Retrieve or Create the Lterm and/or Wterm usingw_open(),
mwv_openi m() , etc.

2. Modify the Lterm and/or Wterm (if necessary) usmg sl ter (),
mv_swt er m( ), etc.
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3. Precomputethe transformations between the coordinate systems using
the procedurew_sctran()

4. Perform the transformations for specific coordinates using
mwv_ctran(), etc.

A WCS always has a number of predefined attributes, and may also
have any number of user defined, or WCS specific, attributes. These are
defined when the WCS is created, in thattr amgument input to
mv_swt ype(), or in a subsequent call tav_ swattrs(). The WCS
attributes for a specific axis may be queried with the function
mv_gwat t rs() . Attribute values may be modified, or new attributes
defined, withmw_swat t r s() . The issue of WCS attributes is discussed
further in the next section. The WCS attributes which can be set by the
wat t r term consist of a number of standard attributes, plus an arbitrary
number of additional WCS specific (application defined) attributes. The
following standard attributes are reserved (but not necessarily defined) for
each WCS:

Attribute Definition

units Axis units pi xel s, etc.)

| abel Axis label, for plots

f or mat Axis numeric format, for tick labels
wt ype WCS type, e.gl,i near

Table 2.76: WCS Standard Attributes.

In addition, the following are defined for the entire WCS, regardless of
the axis:

Attribute Definition
system System name (logical, physical, etc.)
obj ect External object with which WCS is associated

Table 2.77: WCS Attributes.

For example, to determine the WCS type for axis 1:
call mwv gwattrs (nw, 1, "wtype", wtype, SZ WYPE)
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Axis Mapping

The coordinate transformation procedures include support for a feature
called axis mapping, used to implement dimensional reduction. A example
of dimensional reduction occursiimio, when an image section is used to
specify a subraster of an image of dimension less than the full physical
image. For example, the section might specify a one dimensional line or
column of a two or higher dimensional image, or a two dimensional section
of a three dimensional image. When this occurs the application sees a
logical image of dimension equal to that of the image section, since
logically an image section is an image. Dimensional reduction is
implemented inmwcs by a transformation on the input and output
coordinate vectors. The intermalwcs coordinate system is uriatted by
either dimensional reduction or axis mapping; axis mappifegtafonly
the view of the WCS as seen by the application using the coordinate
transformation procedures. For example, if the physical image is an image
cube and we access the logical image seétfarb, *] , an axis mapping
may be set up which maps physical axis one to logical axis one, physical
axis two to the constant 5, and physical axis three to logical axis two. The
internal system remains three dimensional, but the application sees a two
dimensional system. Upon input, the missing &xis is added to the two
dimensional input coordinate vectors, producing a three dimensional
coordinate vector for internal use. During output, axis two is dropped and
replaced by axis three. The axis map is enteredwithbsaxmap() and
queried withmw_gaxmap() . Here,axno is a vector with axno[ i ]
specifying the logical axis to be mapped onto physical iaXiszero is
specified, the constaaixval [ i ] is used instead. Axis mapping may be
enabled or disabled with a callra_set i () . Axis mapping décts all of
the coordinate transformation procedures and all of the coordinate system
specification procedures. Axis mapping is not used with those procedures
which directly access or modify the physical or world systems (e.g.,
mv_sl term() ornmw_swt er m()) since full knowledge of the physical
system is necessary for such operations.
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Object Creation and Storage

The mwecs interface routines used to create or acoesss objects, or
save and restorawcs objects in external storage, are summarized below

Procedure Call Purpose
mv = nw_open (bufptr, ndim Create an mwcs object
nw = myv_openim (i m Create an mwcs object based on

information from an image

s = nwv_newcopy (m) Create new copy of an mwcs object

mv_cl ose (mw) Remove an mwcs object

mv_| oad (mw, bufptr) Reload an mwcs object

mv_save (mw, bufptr, buflen) Save mwcs information in a baf

mv_| aodim (nw, im Reload a mwcs object from image
header information

myv_saveim (my, im Save an mwcs object into an image
header

Table 2.78: MWCS Object Functions.

mwv_open() creates a nemwcs object and a pointer to it is returned.
If buf ptr is NULL, then an identity transformation is created with the
dimension specified bydi m If buf pt r is pointing to an encodedwcs
buffer, the mwcs object is loaded with that informatiarw_openi n()
initializes anmwcs object with data from the image pointed to by the
image descriptoi m If the image contains no mwcs information, an
identity transformation is loaded insteaav_newcopy() creates a new
mwcs object that is a copy of thewcs object specified bymw
mwv_cl ose() deallocates the memory structures associated with the
mwcs object mnv. mwcs objects can be saved in an encoded,
machine-independent format in a memory arflyis array can then be
saved into a file, sent over the network, etw. save() will save the
contents of thenwcs objectnw into the memory pointed to by the char
pointerbuf pt r. If buf pt r isNULL, a memory budér is allocated whose
pointer is returned iuf ptr. If buf ptr is notNULL, the bufer, of
lengthbuf | en, is used (and resized if necessary). The length of tlierbuf
is returned. The btdr buf pt r can be used in the calsv_open() and
mv_| oad() . mw_| oad() reloads thenwcs objectnw with information
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contained in the bédr buf pt r saved byyw_save() . nw_| oadi n()
reloads an existing mwcs objeatv with information from the image
pointed to by the image descriptam mw_savei n{) saves the contents
of the mwcs objectnw into the image pointed to by the image descriptor
im

Coordinate Transformation Procedures

The mwecs procedures used to perform coordinate transformations are
summarized below

Procedure Call Purpose
ct = mw_sctran (mwv, systeml, Compile a coordinate
systenk, axes) transformation between systems
ival = mw _gctransT (ct, Itm Itv, Returnthe compiled
axtypel, axtype2, maxdi m transformation
nk_ctfree (ct) Deallocate the coordinate
transformation structure
X2 = mnv_cltranT (ct, x1) Return the transformation of a
single point
mv_vitranT (ct, x1, x2, npts) Return the transformation of an
array of points
mv_c2tranT (ct, x1, yl, x2, y2) Return the two-dimensional
transformation of a point
mv v2tranT (ct, x1, yl, x2, y2, Transform an array of two
npt s) dimensional points
mv_ctranT (ct, pl, p2, ndinm Transform an arbitrarily
dimensioned point
mv vtranT (ct, v1, v2, ndim Transform an array of arbitrarily
npt s) dimensioned points

Table 2.79: MWCS Coordinate Transformation Procedures.

The mw_sctran() procedure precomputes the transformation from
one coordinate systerayst eni, to anothersyst en®, for the specified
axes in thenwcs objectnw returning a pointer to the optimized coordinate
transformation. This pointelct is used in the subsequent coordinate
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transformation callsyw_c2t r an( ), etc. Theaxes amgument is a bitfield

that represents which axes the transformation should apply to. That is, if
you wish to transform the first two axes (x and y),ssdts = 3. The
mwv_gct rant () procedure retrieves a compiled linear transformation and
returns the dimensionality of the transformation. Thguement|t m
contains the coétient determination matriX,t v contains the translation
vector axt ypel contains the axis types for each of the axes in the source
coordinate systemaxtype2 contains the axis types in the destination
coordinate system, angaxdi m specifies the maximum dimensionality
that the arrays can handle.

Coordinate System Specification

The procedures used to enterodify, or inspect thenwcs logical and
world coordinate transformations are summarized helow

Procedure Call Purpose

mv slterml (nw, Itm Itv, ndim  Setthe Lterm for the specified object

mv glterml (nw, Itm Itv, ndinm  Getthe Lterm for the specified object

mv_ssystem (mw, system Set the default world system

mv_newsystem (mw, system ndin)  Create a new world coordinate system

mv_swerml (nw, r, w, cd, ndin  Setthe Wterm for the current system

mv gwerml (mv, r, w, cd, ndim  Getthe Wterm for the current system

Table 2.80: MWCS System Specification Functions.

The proceduresnw sl ternl() andnw gl terml() are used to
directly enter or inspect the Lterm of thevcs objectnmw; which consists
of the linear transformation matrixt m and the translation vectdrt v,
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both of dimensiomdi m defining the transformation from the physical
system to the logical system.

Procedure Call Purpose

mv_saxmap (mwv, axno, axval, ndin) Set the axis mapping
mv_gaxmap (mwv, axno, axval, ndin Get the axis mapping

myv_swt ype (mw, axis, naxes, wtype, Set the axis type and attribute

wattr)

mv swattrs (mwy, axis, attribute, valstr) Setthe axis attribute

mv gwattrs (mw, axis, attribute, valstr) Getthe axis attributes

mv_swsanpT (mw, axis, pv, w, npts) Set a world system using sampled data

mv_gwsanpT (mw, axis, pv, w, npts) Get a world system using sampled data

Table 2.81: Axis Specification Functions.

Procedure Call Purpose
mv_translator (nw, Itv_1, Itm Apply a general transformation to
l[tv_2, ndim the Lterm, single precision
mv translated (nw, Itv_1, Itm Apply a general transformation to
l[tv_2, ndinm the Lterm, double precision
mv_rotate (nw, theta, center, Apply a rotation transformation to
axes) the Lterm
mv_scal e (nw, scal e, axes) Apply a scale transformation to
the Lterm
mv_shift (nmw, shift, axes) Apply a translation (shift)

transformation to the Lterm

Table 2.82: Applying Transformations to Lterm.

If the logical system undgoes successive linear transformations,
mv_transl ate() may be used to translate, rather than replace, the
Lterm of themwcs object mw where the given transformation matrix and
translation vector refer to the relative transformation wgutex by the
logical system. This will always work since the Lterm is initialized to the
identity matrix when a newmwcs object is created. See also
mv_rotate(),mv _scal e(),andnw _shift().
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Generic coordinate transformations are available using the procedures
mv_translate(),mv rotate(), mw _scal e, andmw_shift. The
mv_transl ate() procedure is the most general, with the others
provided as convenient front-ends. Note that r ot at e() rotates the
Lterm of themwcs objectnw through the angle theta, specified in radians,
about an arbitrary point center for the specified axes. The ayasent is
abitfield representing which axes to which the transformation applies. That
is, each bit represents an axis to transform.

mwcs Parameters

Themwcs status procedures, used to query or seinves parameters,
are as follows.

Procedure Call Purpose
mv_seti (mw, what, ival) Set a parameter
ival = mnv stati (mv, what) Retrieve a parameter

Table 2.83: MWCS Status Procedures.

Name Type Description

MW _NDI M i nt Dimensionality of logical system

MN NWCS i nt Number of WCS defined

MV REFI M i nt Reference image, if any
MN_USEAXNVAP bool t r ue if axis mapping is enabled

MW _NPHYSDI M i nt Dimensionality of physical system

MN SAVELEN i nt Character required farw_save() buffer

Table 2.84: MWCS Interface Parameters.

MA NDI M may difer from MV NPHYSDI M if dimensional reduction
has been specified and axis mapping is enalbl@dNWCS returns the
number of WCS currently defined; at least two WCS are always defined,
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i.e., the logical and physical systems (the world system will default to the
physical system if not otherwise defined).

Matrix Routines

The following general purpose matrix manipulation routines are used
internally within the interface to compile or evaluate transformations, and
may be useful in applications code as well.

Procedure Call Purpose

mv_invertt (o_Itm n_Itm ndim Invert a square matrix

mv mult (Itm31, Itm2, Itmout, ndin) Multiplytwo matrices

mv vhult (Itm Itv_in, Itv_out, ndim Multiply a matrix and a vector

Table 2.85: Matrix Routines.

Each is implemented for botheal and doubl e variables. They
operate on square matrices whose dimensions are specifietl byi.e.,
[ tn{ ndi m ndinj.

Examples

This section presents of a few simple examples to demonstrate the basic
workings of themwecs interface. The examples will be code fragments
showing the necessary declarations, etc., and are not intended to be
complete programs.

Example2.31 shows how to retrieve thewcs information from an
image. Exampl@.32 will create a WCS such that the world system is
centered on an image and the axis decrease value with increasing pixel
value. Exampl.33 shows some examples of transforming coordinates
with an already openediwcs object. Assume that thenwcs object
describes a transformations for a three dimensional image. The final
example (Exampl@.34) prints all the values for all the attributes of all the
axis of an image'mwcs.
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pointer mw, im
char i magenane[ SZ_FNAME]

im=inmmap (inagenanme, READ_ONLY, O
mv = mw_openim (im

# Performany macs mani pul ation

# Close the image and the macs.

call mwv_close (my)

call inmunap (im

# Open the inage and the mwes of the inage
call clgstr ("imge", imagenanme, SZ_FNAME)

Example 2.31: Retrieving mwcs Information From an Image.
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This next example creates a WCS such that the world system is centered

on an image and the axis decreases with increasing pixel values.

i nclude <i mhdr. h>

pointer mw, im mw_open(), inmap()
r eal cd[2,2], r[2], W 2]

begi n

nw = mw_open (NULL, 2)

# Open an i mage

im=inmmp (imagenanme, READ WRI TE, 0)
# Modify the Werm as descri bed above.

cd[1,1] = -1.0
cd[2,2] = -1.0
cd[1,2] = 0.0
cd[2,1] = 0.0
r[ 4] = IMLEN(im 1) / 2.
r[ 2] = IMLEN(im 2) / 2.
W 1] = 0.0
W 2] = 0.0

mv_swerm (mw, r, w, cd, 2)

myv_savei m (mw, im

# Create a new 2-di nensi onal macs obj ect

cal |
# Place the new mancs object into the inage header.
cal |

Example 2.32: Creating WCS Centered on Image.
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The following examples transform coordinates with an already opened
mwcs object. Assume that the object describes a transformation for a
3-dimensional image.

pointer im mw, immap(), nw_open()
poi nter Iwlct, w 1lct, Iw2ct, w 2ct, Iw3ct, nw _sctran()
r eal nmv_cltranr()
real | ogi cal _point, world_point
r eal | ogical 3_array[ 3, npts], world3_array[ 3, npts]
doubl e world2d_x, world2d_y, |ogical 2d_x, |ogical 2d_y
doubl e 1ogical _point_array[npts], world_point_array[npts]
begi n
# Qpen inmage and its macs
im= immp (imgenanme, READ ONLY, O0)

mv y openim (im

# Conpute the 1-di mensional transformation fromthe logical to

# world and world to logical systens for the first axis.

Iwlct = mw_sctran (mw, "logical", "world", 1b)

w 1ct = nw_sctran (nw, "world", "logical", 1b)

# Define the 2-dimensional transformation for the 2nd and 3rd axis

Iw2ct = mw_sctran (mw, "logical", "world", 6b)

w 2ct = nw_sctran (nw, "world", "logical", 6b)

# Define the full 3-dinmensional transformation for all the axis

Iw3ct = mw_sctran (mw, "logical", "world", 7b)

w 3ct = nw_sctran (nw, "world", "logical", 7b)

# Transforms various points

world_point = mw cltranr (lwlct, |ogical_point)

| ogi cal _point = mw cltranr (w 1ct, world_point)

call nw vltrand (Iwlct, |ogical _point_array, world_point_array, npts)

call nw c2trand (W 2ct, world2d_x, world2d_y, |ogical2d_x, |ogical2d_y)
I mw vtranr (Iw3ct, logical 3 _array, world3_ array, 3, npts)

2

Example 2.33: Transforming Coordinates in an Open mwcs.
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The example below prints all values for all attributes of all axes of an

images mwcs.
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i ncl ude <mnset . h>

pointer im mw immap(), nmv_openin()
I nt axis, attr_index, mwnv stati()
char attr_index_string[SZ LINE], val ue[ SZ_LI NE]

begin
# QOpen the image and its macs
im= immap (imagenanme, READ ONLY, O0)
nwv = mw_openim (im

do axis =1, mvstati (mv, MAVNDIM {
call printf ("For axis %:\n")
call pargi (axis)
attr_index =1

repeat {
call sprintf (attr_index_string, SZ_LINE, "%")
call pargi (attr_index)

i fnoerr (call nw gwattrs (mwv, axis, attr_index_string,
val ue, SZ_LI NE)
call printf ("For attribute %, %, the value is %.\n")
call pargi (attr_index)
call pargstr (attr_index_string)
call pargstr (val ue)
attr _index = attr_index + 1

} else {
call printf ("No nmore attributes for axis %d.\n")
call pargi (axis)
br eak

Example 2.34: Printing Axis Attribute Values for a mwcs.
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2.12

Miscellaneous — etc

cl Environment Variables

These procedures return the value of acl environment variable. Thereis
a separate procedure for each of the data types bool, i nt, real,
doubl e, and character strings. There is no distinction made between the
variously sized integer variables. If the variable is not found or cannot be
converted to the appropriate data type, the procedures abort.

Procedure Call Purpose

bool = envget b (varnane) Get abool ean environment variable
i nt = envgeti (varname) Getani nt eger environment variable
r eal = envgetr (varnane) Getar eal environment variable

doubl e = envgetd (varnane)

Get adoubl e environment variable

envgets (key,

val ue,

maxch)

Get ast ri ng environment variable

Table 2.86: Reading Environment Variables.
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Time and Timing
These procedures deal with absolute local time as well as relative CPU

clock time.
Procedure Call Purpose
brktime (ltime, tn Convert a long integer time into
year month, dayetc.
long = clktinme (old_tinme) Get the clock time

cnvdate (lItine, outstr, maxch) Convert long integer time to date
string (short format)

cnvtine (Itime, outstr, naxch) Convert long integer time to time
string (long format)

long = cputine (ol d_cputine) Get the CPU time consumed by
process
sys_ntinme() Mark the time (for timing
programs)
sys_ptime() Print the elapsed time since last
mark

Table 2.87: Clock and Timing Procedures.

Thecl kti me() procedure gets the current clock time (local standard
time) in units of seconds since 00:00:00 1 January 1980. This can be
broken down into days, hours, seconds, etc. litkt i me() , or printed
as a date and time string withnvt i me() . Thebr kt i me() breaks the
long integer time returned iyl kti me() into the fields of the structure
defined in<t i me. h>. The procedure is valid from 00:00:00 on 1 January
1980 to 23:23:59 28 on February 2160w dat e() converts a time in
integer seconds since midnight on 1 January 1980 into a short string such
as "May 15 18:24"cnvt i me() converts a time in integer seconds since
midnight on 1 January 1980 into a string, i.e., "Mon 16:30:05 1784ar
The length of the output strings for the procedures is given by the
paramete6SZ _DATE in<ti me. h>.
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Parameter Contents

SZ_TI ME Size of dow 00: 00: 00
dd- Mm yy

SZ DATE Sizeof mmm dd hh: mm

LEN TMSTRUCT Length of time struct

TM_SEC Seconds (0-59)

TM MN Minutes (0-59)

T™ _HOUR Hour (0-23)

TM_MDAY Day of month (1-31)

TM_MONTH Month (1-12)

TM_YEAR Year, eg., 1982

TM VDAY Day of week (Sunday is 1)

TM_YDAY Day of year (1-366)

Table 2.88: Time Parameters.

Process Information

These procedures return information about the current process.

Procedure Call

Purpose

getuid (outstr, maxch)

get host (outstr, maxch)

Get the name of the runtime user
of aprogram

Get the network name of the host
machine

i nt = getpid()

sysid (oustr, nmaxch)

Get the processid

Return aline of text identifying
the process

Table 2.89: Process Information Functions.



Miscellaneous — etc 145

The get pi d() procedure returns an integer process identifubile
the others return a string value. Téesi d() procedure returns a line of
text identifying the current usemachine, and version of IRAFRNd
containing the current date and time of the form:

NQAQ | RAF V1.3 usernane@yra Tue 09:47:50 27- Aug- 85

The string NOQAQ' | RAF V1. 3 is given by the value of the cl
environment variableer si on. The stringuser nane is the value of
the environment variableser i d, defined by the user in thegi n. cl
file. The output string is not terminated by a newline.

Convert Flags

These procedures convert betwéawol variables and nt logical flags
having the value¥ES or NO.

Procedure Call Purpose
int = btoi (bool ean_val ue) Convert boolean to integer flag
bool = itob (int_value) Convert integer to boolean

Table 2.90: Flag Conversion Functions.

Miscellaneous Functions

Procedure Call Purpose
int = | popen (device, node, type) Open the line printer as a file
int = oscmd (cnd, infile, Send a command to the host
outfile, errfile) operating system
pagefiles (files) Display a text file or files on the
standard output
gsort (x, nelem conpare) General quick sort for any data
structure
tsl eep (seconds) Delay process execution

Table 2.91: Miscellaneous Functions.
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Theoscnd() procedure sends a machine dependent command to the
host operating system. It tries to spool the standard output and error output
in the named files if the names for the files are not null. The integélag
is returned if the command executes successfullye gsort ()
procedure is a general quicksort for arbitrary objects. Tie@ntx is an
int array indexing the array to be sorted. The user supplied function
conpar e(x1, x2) is used to compare objects indexed by x. The value
returned by compare has the following significance for sorting in
increasing order:

o ~Lif obj [x;] <obj [x;]
compare = [ 0 if obj [x,] =obj [x,] O
0 1 if obj [x,] >obj [x,] U



CHAPTER 3:

Error
Handling

-I-he SPP language provides two facilities for error handling (see

Table3.1).

Procedure Error Handled

error (errno, errtext) Signal error conditiong[r r t ext
cannot includé n)

fatal (errno, errtext) Signal fatal error condition

Table 3.1: Error Handlers in SPP.

An error is signalled by calling therror() procedure. The
error () procedure takes twoguments. The first gument is the error
number Application programs that call the error procedure should use an
error number between 1 and 500. Numbers above 500 are used for system
errors. The error number is used by any code which catches errors to distin-
guish between the didrent types of errors. If your application program
does not catch errors, the error number is arbitifdrg second gument is
the error message. Thisgament is a string printed on the standard error
stream, which is usually connected to the 'ss&grminal. Note that the
error message shoutit contain any newline\ (1) characters. The proce-
dure in Exampl&.1 demonstrates the use of the error procedure.

147
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# GEOMEAN- Calculate  the geometric mean of a real array
real procedure geoman (X, n)
real X # ii  Array of positive numbers
int n # i. Size of array
H#--
int i
int sum
begin
if (n <= 0)
call error (1, “Can't compute geometric mean: no values”)
sum = 0.0
doi =1, n{
it (x[i] <= 0.0)
call error (1, “Can't compute geometric mean: <0")
else
sum = sum + log (X[i])
return exp (sum / real(n))
end

Example 3.1: Errors Flagged by error() Procedure.

There is another procedure with the samgumaents aserror()
namedfatal() . The diference between the two procedures is the sever-
ity of the error level. Errors which are posted by fétal() procedure
cannot be caught.

iferr

Errors are caught by enclosing the statements to be checked for errors in
aniferr  block or anifnoerr  block. Aniferr  block has one of two
forms. The first form can only check a single statement and the statement
must either be an assignment statement or a procedure call. The second
form can check any number of statements of any type. The two forms of

theiferr  block have the following syntax:

iferr ( statement){ iferr {
statenents statenents

}else { } then {

statenents

}

Single Condition,
Assignment/Procedure Call

statenents
} else {

statenents

Multiple Conditions,
Multiple Statements }

Figure 3.2: Syntax

for iferr
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The el se portion of thei f err block is optional. The meaning of an
i ferr block isthat if an error occurs (i.e., if err or () wascalled by one
of the statements in the block) while executing the statements checked by
the block, then execute the following code, but otherwise execute the code
inthe el se block. The normal action of the error procedure, which isto
print a message on the standard error stream, is suppressed. The syntax of
ani f noerr block isthe same asthat of thei f er r block, except that the
keyword i f err isreplaced by i f noerr. The meaning of ani f noerr
block is the opposite of that of thei f er r block. If no error occurs during
the execution of ani f noer r block, then the following code is executed,
otherwise the el se block is executed. The following example shows the
two forms of thei f er r block.

iferr (result = geoman (x, n)) { iferr {
result = 0.0 result = geoman (x, n)
} then {
result = 0.0

Example 3.3: Two Ways to Use the i f er r Block.

If there is more than one procedure call in a given block, then
errchk() al of them except the last (see below).

errchk

In Example 3.3, thei f er r block catches an error in a procedure that it
calls directly, geonean. It is possible, however, for the error to occur in a
subroutinethat is called indirectly, that is, called by the called procedure. In
order for thei f err block to check for these errors, an err chk state-
ment must be added to each of the procedures between the procedure with
the i f err block and the procedure which contains the error () call.
The er r chk statement is placed in the declarations section of the proce-
dure and has the following syntax:

errchk list of procedure nanes

When an error occurs in a procedure whose name is listed in an
er r chk statement, program execution in the calling procedure jumps to
ther et ur n statement. Thus the rest of the code in the calling procedureis
skipped. By including er r chk statements in all of the routines between
the procedure with thei f er r block and the procedure which contains the
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error () cal, program execution will return to thei f er r block without
executing any intervening code if the error () procedure is called.
Example 3.4 shows the use of the err chk statement. The lowest level
procedure, gt di st , computes the distance between two points. If thisdis-
tanceiszero, it calstheerror () procedure. The intermediate level pro-
cedure, gti nv, computes the inverse of the distance. To prevent the
procedure from trying to compute the inverse of zero, the procedure con-
tainsanerr chk statement for gt di st . This causes the execution of the
program to skip this statement and return to thei f err block ingt | i ne.

i ncl ude <mach. h> # Defines EPSILONR
# GILINE -- Conpute the line between two points (A*x + B*'y + C = 0)

bool procedure gtline (pl, p2, a, b, c)

real pl[ 2] # i: First point
real p2[ 2] # i: Second point

r eal a # 0. X coefficient
r eal b # 0. Y coefficient
r eal c # 0: Constant term
H- -

r eal inv

begin

iferr (call gtinv (pl, p2, inv)) {
# The two points coincide
a=00; b=00; c=0.0
return false

} else {
a = (pl[2] - p2[2]) * inv
b = (p2[1] - p2[1]) * inv
¢ = (pi[1] * p2[2] - pl[2]) * 8nv
return true
}
end
# GIINV -- Calculate inverse of the distance between two points

procedure gtinv (pl, p2, inv)

real pl[ 2] # i: First point

r eal p2[ 2] # i: Second point

real i nv # 0. lnverse distance
#--

real di st

errchk gtdi st

begin
call gtdist (pl, p2, dist)
i =1.0/ dist .
end v 'S (Continued...)

Example 3.4: Using the er r chk Statement.
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# GTDIST -- Calculate the distance between two points

procedure gtdist (pl, p2, dist)

real pl[2] # i First point
real p2[2] # i Second point
real dist # o: Distance

#

real dx, dy, distsq

begin
dx = p2[1] - pl[l]
dy = p2[2] - pif2]
distsg = dx * dx + dy * dy
if (distsq < EPSILONR)
call error (1, “The two points coincide”)
else
dist = sqgrt (distsq)

end

Example 3.4 (Continued): Using the errchk  Statement.

Additional Error Handling Procedures

IRAF provides several procedures for handling errors infen
block. Theerrcode procedure returns the error code that was passed to
theerror()  procedure. This allows the program to distinguish between
different kinds of errors. Therrget procedure also returns the error
code and in addition returns the error message that was passed to the
error()  procedure. Therract procedure allows a program to repost
the error that was caught by tiferr  block. Theerract procedure has
one agument, the severity level of the etrdihere are three error levels
and they are defined in the include Bleor.h . The two highest levels,
EA FATAL andEA _ERRORcorrespond to the error levels produced by
the proceduresfatal() and error() respectively Thus calling
erract  with the agumentEA_FATAL s the same as callirfgtal()
with the same error that was previously postecetgr() . Similarly,
calling erract  with the agumentEA_ERRORSs the same as calling
error()  again. The lowest error levelESA_ WARNI erract  is called
with an agument ofEA_WARNthe error message is printed on the stan-
dard error stream and execution of the program proceeds as usual. The call-
ing sequences for these three routines are the following.
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Call Error Handled

code = errcode () Return error code

code = errget (oustr, nmaxch) Returnerror code and message
erract (severity) Repost error

xer_reset () Reset error state

Table 3.2: Error Handling Procedures.

The following example (Example3.5) illustrates the use of the
errcode and erract procedures. It converts all errors with a code of
one to warnings and reposts all other errors as errors.

i ncl ude <error. h>
# JDATE -- Print the Julian data for each date in the file

procedure jdate (fnane)

char f name[ ARB] #1i: File nane
#- -
char | i ne[ SZ_LI NE]
i nt fd, year, nonth, day, date
i nt open(), getline(), errcode()
begin
fd open (fnanme, READ ONLY, TEXT_FI LE)

err (call parse_date (line, nonth, day, year)) {
f (errcode () ==
call erract (EA_WARN)
el se
call erract (EA_ERROR
} else {
if (year < 50)
year = year + 2000
else if (year < 100)
year = year + 1900
# Formul a from Van Fl andern & Pulliken
# Valid for dates after March 1900
date = 367 * year - 7 * (year + (month + 9) / 12) / 4 +
275 * ponth / 9 + day + 1721014
call printf ("%l%% is julian date %\ n")
cal|l pargi (nonth)
call pargi (day)
call pargi (year)
call pargi (date)

= op
while (getline (fd, line) !'= EOF) {

ifer

i

}
} (Continued...)

end

Example 3.5: Using the err code and err act Procedures.
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procedure parse_date (line, nonth, day, year)

char i ne[ ARB] # i: String containing date
i nt nmont h # o: Month
i nt day # o: Day
i nt year # 0: Year (0 <= year <= 99)
#- -
i nt ic, nc, idate, date[3]
i nt ctoi
begi n
ic =1

do i_date:l, 3 {
nc = ctoi (line, ic, date[idate])

if (nc == 0)
call error (1, "Part of date is missing")
while (line[ic] <0 ]| line[ic] > 9) {
if (line[ic] == ECS
call error (1, "Part of date is m ssing")
ic=ic+1
}
}
nmonth = date[ 1]
day = date[ 2]
year = date[ 3]

end

Example 3.5 (Continued): Using the er r code and er r act Procedures.

Error Handlers

In addition to handling an error locally with ani f er r block, it isaso
possible to handle an error globally by posting an error handling procedure.
The purpose of posting an error handling procedure is to restore the com-
puter to a known state when a program exits abnormally with an error.
Error handlers can be posted with oner r or or xwhen. Error handlers
posted with oner r or are called whatever the type of error that occurred.
Also, the program will not continue executing after an error handler is
called. Error handlers posted with xwhen are associated with a particular
error code and execution of the program will continue after the error han-
dler exits.
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Call Error Handling

onerror (proc) Post an error handler

xwhen (signal, handler, old_handl er) Postand error handler

zsvj np (junpbuf, status) Save system state

zdoj np (j unpbuf, code) Jump

Table 3.3: Error Handlers.

The procedurenerror () has a single gument, the name of the
error handling procedure. The error handling procedure must be declared
external with theext er n statement. If an error occurs in the program after
the error handling procedure is posted, the error handling procedure will be
called before the normal program cleanup. The error handling procedure
will be passed a singlegarment, the error code passed to the error proce-
dure. Other information necessary for the error handling procedure should
be passed through the common block.

The following example shows how an error handling procedure is
posted byonerror and what it looks like. The first procedure,
term.i nit, opens the terminal for reading and writing and puts the
terminal in raw mode. The second procedurer m end, closes the
terminal and restores the terminal from raw mode. Since leaving the
terminal in raw mode after the program exits will cause a lot of problems,
term. nit posts an error handling routine to restore the terminal. The
error handling routine simply calls the normal exit proceduee,m end.

Note the file descriptors are setNoLL after they are closed. This is so
that if an error occurs in the program atter m end is called, the error
handling routine will not try to close the same file descriptors twice.
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include  <fset.h>
# TERM_INIT -- Initializa the terminal for raw mode i/o

procedure term init  (in, out)

int in # 0. File descriptor used to read terminal
int out # o0: File descriptor used to write to terminal
H--
int ttyin, ttyout
common /term/ ttyin, ttyout
extern term_error
int ttopen()
begin
# Open file descriptors used for terminal ilo
in = ttopen ("dev$tty’, READ_ONLY)
out = ttopen ("devs$ity", APPEND)
ttyin - = in
ttyout = out

# Put terminal in raw mode
call fseti (ttyin, F_RAW, YES)
# Set up error exit routine
call onerror (term_error)

end

procedure term_end()

H--
int ttyin, ttyout
common /term/  ttyin, ttyout
begin
if (ttyin 1= NULL) {
call fseti (ttyin, F_RAW, NO)
call close (ttyin)
ttyin - = NULL
}
if (ttyout I= NULL) {
call close (ttyout)
ttyout = NULL
end } (Continued...)

Example 3.6: An Error Handling Procedure.



156 Chapter 3: Error Handling

# TERM ERROR -- Procedure called on error exit

procedure termerror (status)

int st at us # i:. Error code
#- -
begin
if (status > 0)
call termend
end

Example 3.6 (Continued): An Error Handling Procedure.

There are two kinds of errors that can occur during the execution of a
program,synchronous andasynchronous errors. Synchronous errors occur
when the task calls thex r or () procedure. These are synchronous errors
because the task is in a known state when the error condition occurs. As a
result, error handling is relatively simple. Synchronous errors can be
caught by an f er r block, as described previousisynchronous errors,
also known as exceptions, occur when the hardware detects an illegal con-
dition. Because these errors are detected by the hardware and not by the
program, the program is in an unknown state when the error occurs. This
makes error handling more filiult. IRAF divides all asynchronous errors
into four kinds: access violations, arithmetic errors, interrupts, and inter-
process communication errors. IRAF has a default exception handler for all
asynchronous errors. The default exception handler does a non-local jump
to the IRAFmai n routine, prints an error message, performs task cleanup
such as closing files, and exits normallyhis default behavior is not gisf
cient, a program can post its own error handler by catiiszen.

xwhen takes three guments. The first two are inputs and the third is
an output. The two inputs are a symbolic constant indicating the error to be
trapped and the address of the error handling procedure. The symbolic con-
stants are defined xwhen. h. The address of a procedure is computed
from the functionl ocpr. The output is the address of the old error han-
dling procedure. This is provided so that the program can restore the old
error handler later or so that it can chain error handlers by calling the old
error handler when the error handler exits. The error handling procedure
has two aguments. The first is an input, the symbolic constant representing
the error code. The second is an output, the address of error handler to call
after the error handler returns. If the error handler does not chain to another
error handlerthe second parameter should be set to the symbolic constant
X_| GNORE.
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Usually an error handler resumes execution of a program by performing
a non-local jump. A non-local jump is performed by calling two proce-
dures,zsvj np andzdoj np. Zsvj np saves the current state of the com-
puter in an arrayThe length of this array is hardware dependent and is
specified by a symbolic constantdgonfi g. h. Zdoj np takes the array
generated bysvj np and uses it to restore the computer state to what it
was whenzsvj np was called. Thus the program ca#ldoj np and
returns fromzsvj np. Zsvj np has a second gument,st at us, which
indicates whether the return fransvj np is a normal return or a result of
a call ofzdoj np. The value returned fromsvj np is the second gu-
ment ofzdoj np or K if zdoj np was not called. When using non-local
jumps, the condition which caused the error must not be repeated or the
program will go into an infinite loop.

Example3.7 shows how to post an error handler witkhen. Only
two of the four asynchronous errors are trapped, access violations and
arithmetic errors. The old error handlers are saved in local variables so that
they can be restored at the end of the subroutine. The system state is saved
by proceduresvj np. The length of the array is given by a symbolic con-
stant defined in the header fitkonfi g. h. The procedure then calls
do_cnp, which executes the command read from the file. If an access vio-
lation or arithmetic error occurs while the command is being executed, the
program will caller r _cnd. This procedure restores the system state by
callingzdoj np. The array with the system state is passed through a com-
mon block. The program then returns framoj np and prints the error
message.
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end

command:\n")

include  <xwhen.h>
include  <conf ig.h>
# BATCH_CMD- Execute a series of commands in a file
procedure batch_cmd (f ile)
char file[ARB] # i File name
H--
int jumpbuf[LEN_JUMPBUF]
common /jmpcom/ jumpbuf
char command[SZ_LINE]
int fd, nc, status
pointer acv_handler, arith_handler, junk
extern err_cmd
int open(), geline()
pointer  locpr()
begin
# Open batch file
fd = open (f ile, READ_ONLY, TEXT_FILE)
# Post error handlers
call xwhen (X_ACV, locpr(err_cmd), acv_handler)
call  xwhen (X_ARITH, locpr(err_cmd), arith_handler)
repeat {
call zsvimp (jumpbuf, status)
if (status I= OK) {
call  printf (STDERR, "Error in following
call  printf (STDERR, "%s\n")
call pargstr (command)
call flush (STDERR)
}
# Exit on end of file, skip blank lines
nc = getline (fd, command)
if (nc == EOF)
break
else if (nc == 1)
next
# Strip trailing newline from command
command[nc-1] = EOS
call do_cmd (command)
# Restore old handlers
call xwhen (X_ACV, acv_handler, junk)
call xwhen (X_ARITH, arith_handler, junk)

(Continued...)

Example 3.7: Posting an Error Handler with xwhen.
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# ERR CVD -- Error handler for batch processor
procedure err_cmd (code, nxt_handl er)

i nt code # i: Error code which triggered this exception
i nt nxt _handl er # o: Handler called after this handler exits
#- -

i nt j unpbuf [ LEN_JUVPBUF]

conmon /jnpconl  junpbuf

begi n
# Resune execution at zsvjnp
nxt _handl er = X | GNORI
call zdojnp (junpbuf, code)
end

Example 3.7 (Continued): Posting an Error Handler with xwhen.






Making a

Task

-I-his chapter describes how to make SPP source into a working pro-
gram. In most cases, this means creating an IRAF task. That is, a command
to be executed in the IRAF cl. Inherent in creating the task is compiling and
linking the source to create an executable programalsb describe the
conventional structure of packages of tasks in the cl.

Program Structure

An SPP source file may contain any numbeprodcedur e declara-
tions, zero or oneask statements, any numberaéf i ne ori ncl ude
statements, and any numbemhefl p text segments. By convention, global
definitions and include file references should appear at the beginning of the
file, followed by the task statement, if amyd the procedure declarations.

The t ask Statement

Thet ask statement is used to make an IRAF task. That is, a command
recognized in the cl as an executable program. Primdhily is accom-
plished with thd ask statement, part of the SPP code. A file need not con-
tain a task statement, and may not contain more than a single task
statement. Files without task statements are separately compiled to produce
object modules, which may subsequently be linked together to make a task,
or which may be installed in a librarm singlephysical task (ptask) may
contain one or morkogical tasks (Itasks). These tasks need not be related.
Several ltasks may be grouped together into a single ptask merely to save
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disk storage, or to minimize the overhead of task execution. Logical tasks
should communicate with one another only via disk files, even if they
reside in the same physical task.

task |taskl, Itask2, [task3 = proc3

Thet ask statement defines a set of Itasks, and associates each with a
compiled procedure (see Exampld). If only the name of the ltask is
given in the task statement, the associated procedure is assumed to have the
same name. A file may contain any number of ordinary procedures which
are not associated (directly) with an Itask. The source for the procedure
associated with a given Itask need not reside in the same file as the task
statement. An ltask associated procedoust not have any gjuments. An
Itask procedure gets its parameters from the cl via the cl interface. Most
commonly used are thed get T() procedures. Thel put T() proce-
dures may be used to change the values of parameters.

task al pha, beta epsiol =eps
procedure al pha()

int npix, clgeti ("npxi")
real lcut, clgetr()
char fil e[ SZ_FNAME]

begin
npix = clgeti ("npix")
lcut = clgetr ("lower_cutoff")
call clgstr ("input_file", file, SZ_ FNAVE)

Example 4.1: Making an IRAF Task.

An IRAF task be run by the cl or called from the command interpreter
provided by the host operating system (the shell or DCL for example) with-
out change. Parameter requests and I/O to the standard input and output
will function properly in both cases. When running without the cl, of
course, the interface is much more primitive.riin an IRAF task directly
without the cl begin by simply running the program. Such stand-alone
operation is especially useful when debugging. The task will sense that it is
being run without the cl and issue a prompt, see Exadnple
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> ?
al pha beta epsilon
> al pha
npi x: (response)
| ower _cutoff: (response)
input_file: (response)
I task al pha continues
> bye

Example 4.2: Parameter Prompting.

Every IRAF task has some special commands built in. The command ?
will list the names of the Itasks recognized by the interpreter. The com-
mand bye is used to exit the interpreter, returning to the host command
interpreter. To execute a host command at the > prompt, precede the com-
mand by an exclamation point (! ).

Compiling and Linking

The steps necessary to transform SPP code into a working program are:
Preprocesses SPP to Ratfor and then to Fortran
Tranglate Ratfor to Fortran

Compile Fortran to object code

A w0 DN P

Link object with IRAF and system libraries resulting in executable
binary

These could be performed individually and manually. However, to pro-
vide a simple and portable mechanism (remember that the goal isfor IRAF
to be host independent), IRAF provides tools to do this. While the tools are
straightforward for simple cases, they provide the power to handle more
sophisticated operations.

mkpkg

The mkpkg utility is used to make or update IRAF packages or libraries.
It is the highest level means of compiling and linking in the IRAF environ-
ment. There is a mkpkg command available in the cl as well as the host
environment. Usage is identical in either case, except that the details of
when a particular argument may need to be quoted will vary depending on
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the command language used. It is analogous todke utility in Unix in

that it not only performs compilation and linking, but it also performs
enough revision control to perform only the needed updates. While mkpkg
uses several command line options to control its operation, the particular
actions to perform are specified in a text file,rtiigkg file

This section provides only the briefest introduction to mkpkg. For a
complete discussion see the help pages in the cl by thgihg nkpkg.

nkpkg provides two major facilities: a library update capability and a
macro preprocessoflhe macro preprocessor provides symbol definition
and replacement, conditional execution, and a number of built-in
commands. The usefulness of these facilities is enhanced by the ability of
nkpkg to update entire directory trees, or to enter the hierarchitjpkg
descriptors at any level. For example, typirigokg in the root directory
of IRAF will make or update the entire system, whereas im tled $sys
directory mkpkg will update only the system libraries, and in the
i raf $sys/ fi o directory mkpkg will update only thigo portion of the
system libraryl i bsys. a.

The mkpkg utility is quite simple to use to maintain small packages or
libraries, despite its full complexity of the discussion which follows. The
reader is encouraged to study several examples of working mkpkg files
before reading further; examples will be found throughout the IRAF sys-
tem. The mkpkg files for applications packages tend to be very similar to
one anotherand it is quite possible to successfully copy and modify the
mkpkg file from another package without studying the reference informa-
tion given here. A very simple mkpkg file is shown below:

$omake intoal . x
$link intoal.o

This will compile and link the SPP program in the file named
i mt oal . x, resulting in an executable program in the file oal . e.
Note the$ characters beginning the lines. The source ifitd fal . x) is
assumed to havetaask statement. This type of mkpkg file would be used
for the most simple applications with a small number of procedures in one
or at most a few source files and requiring no libraries other than the IRAF
system libraries. A slightly more complicated example (Exarh3e
maintains a library for a small package of tasks.
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$call relink
$exi t
relink:
$update tutor.a
$cal | |'i nkt ut or
i nktutor:

$omake x_tutor.x
$link X_tutor.o tutor.a -0 xx_tutor.e

tutor. a:
arrows. x <gset. h>
bones. x <i mhdr. h>
filter.x <i mhdr . h>
hel | 0. x <gset. h>

Example 4.3: MKPKG File for Maintaining Small Library.

This introduces two features okpkg: calling modules and maintain-
ing a library The$cal | statement allows dérent blocks of statements to
be executed. These are named by labels terminated by a colon. Note that
each module block must terminate with a semicolon. Otherwise, the fol-
lowing block will also be executed. A block may also be called directly as
an entry point by specifying the label name onrthpkg command line,
for example:

nkpkg updat e

The $updat e command maintains the library of procedures for the
package t(ut or in this case). The lab¢lut or . a delimits the “depen-
dencies” section which lists include files used by each source file. A source
file will be compiled if either the source itself or any of the include files
upon which it depends has changed since the last update. Note also the
option on thebl i nk statement, specifying the name of the output execut-
able binary file. A library may include references to libraries in other direc-
tories, using th@syntax. These are mkpkg file in the specified directory
$l i nk statement may reference other libraries in addition to the implicit
IRAF system libraries and local libraries defined in the current mkpkg. If
these reside in the IRAF system (or an external package) library directory
they may be referenced using la prefix. For example:

$link x_stplot.o stplot.a -ltbtables -Ixtools -0 xx_stplot.e
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Most often, an installed package will maintain binary executables in a
common directoryThese are maintained using mkpkg with $imove
command:

install
$nmove xx_stplot.e stsdasbin$x_stplot.e

This example is from the STSDAS external package, hence the symbol
st sdasbi n pointing to the location of the binariote that the execut-
able is renamed in the move. The original has a pxefixwhile the taget
file has the prefix_. This is conventional for tasks installed in packages.
This permits the package to be remade without disturbing the installed
binary until necessarfven though the binaries are installed in a directory
separate from the package directdhe tasks are defined pointing to the
package directory as the location of the executable.

XC

The xc utility is a machine independent program for compiling and link-
ing IRAF tasks or files. The xc utility may also be used to compile or link
non-IRAF files and tasks. The VMS version of xc supports all of the impor-
tant flags exceptD which VMS C doesrt’support in any wayit can be
used to generate Fortran from SPP or Ratfor code, to compile any number
of files, and then link them if desired. xc accepts and maps IRAF virtual
filenames, but since it is a standalone utility (i.e., it need not run in the cl),
the environment is not passed, hence logical names for directories cannot
be used. able 4.1 shows the IRAF virtual file name extensions that are
supported by xc:
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Extension File Type

. X SPP code

o r Ratfor code

f Fortran code

.C C code

.S Macro assembler code
.0 Object module

.a Library file

. e Executable image

Table 4.1: XC-supported Virtual File Name Extensions.

Xc is available both in the cl, via the foreign task interface, and as a stan-
dalone task callable in the host system. Usage is equivalent in either case.
The simple example below compiles and links the sourceyileask. x
to produce the executabigt ask. e.

xc nytask. x

The next example compiles but does not lipk ask. x and the sup-
port fileuti | . x.

xc -c file.x util.x

Now link these for debugging and link in the librariybdeboor . a
(the DeBoor spline routines in theé b directory).

xc -x file.o util.o -1deboor

xc is often combined with mkpkg to automatically maintaigégpack-
ages or libraries. For complete informationxansee the help pages in the
cl by typinghel p xc.

Generic Preprocessor

The generic preprocessor is provided in addition to SPP to convert a
generic operator into a set of type specific operators. Since Fortran requires
that the data types of the calling and called procedgrevants match, it
is the programmeés responsibility to ensure this. The generi preprocessor
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makes this easieBy coding only generic operators, the programmer only
has to maintain a single piece of code, reducing the possibility of an error
and greatly reducing the amount of work.

Note that this section is taken substantially verbatim from the help text
for thegeneri c task. ypehel p generi c in the cl to see it. The term
“operator” here in general refers to an SPP procedure or function. The
generic preprocessor takes as input files written in either the IRAF SPP
language or C with embedded preprocessor directives and keywords. The
calling sequence for the preprocessor (on the Unix system) is as follows:

generic [-t types] [-p prefix] [-o outfile] file [file...]
Any number of files may be processed.

Flags
The following (optional) flags are provided to control the types and
names of the generated files:

e -k Allow the output files generated kyeneri c to overwrite
(clobber) any existing files.

* -0 If an output filename is specified with the -o flag, only a single
input file may be processed. Ay sequences embedded in the output
file name will be replaced by the type “Bxif character to generate the
filenames of the type specific files in the generic fanmflyno $t
sequence is given, the type fsuis appended to the filename. If no -o
output filename is given, the names of the output files are formed by
concatenating the type $wfto the root of the input filename.

e -p Anoptional prefix string to be added to each file name generated.
Provided to make it convenient to place all generated files in a subdirec-
tory. If the name of the file(s) being preprocessedadd. x, and the
prefix isd/, the names of the generated files will ddeaadds. X,

d/ aaddi . x, d/ aaddl . x, and so on.

e -t Used to specify the data types of the files to be produced. The
default value isi | r dx, meaning types SHORthrough COMPLEX.
Other possible types abai, i.e., unsigned byte and unsigned short. The
generic preprocessor does not support type boolean.

Directives

The action of the preprocessor is directed by pla$ig directives in
the text to be processed. The identifieNdDEF and Pl XEL are also
known to the preprocessoand will be replaced by their type specific
equivalents.] NDEF will be replaced byl NDEFS, | NDEFI , etc., and
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Pl XEL will be replaced bghort ,int,real, etc. in the generated text.
Comments#... or/ *..*/ ), quoted strings"(.." ) and escaped line$ %)

are passed on unchanged.

The generic operator shown in Exam¢lé computes the square root of
a vector The members of the generic family would be cabedr s,

asgri, and so on.

# ASQR -- Conpute the square root of a vector (generic)
procedure asqrt$t (a, b, npix)
PI XEL a[ npi x], b[npix]
int npi x, i
begin
doi =1, npix {
if (a[i] < 0$f || a[i] == | NDEF)
b[1] = | NDEF
el se {
$if (datatype !'= rdx)
b[i] = sqgrt(double(ali]))
$el se
b[i] = sqgrt(a[i])
$endi f
}
}
end

Example 4.4: Generic Operator.

The operators are explained in the following list.

» $/text/ - The text enclosed by the matching slashes is passed through

unchanged.

» $t - The lowercase value of the current typdisuharacter (one of the

characterducsi | r dx).

* 3T - The uppercase value of the current typé>saharacter (one of the

character8UCSI LRDX).

» digits$f - Replaced bydigits. O if the current type is real, bgigits
. 0DO if the current type is double, l§\digits,digits) if the type is com-
plex, or bydigits for all other datatypes.

e $if - Conditional compilation. Wo forms of the$i f statement are

implemented:
- $if (datatype ==1t) or
$if (datatype != t) wheretis one or more of the data type

charactersy,i, | ,r,d, etc.).
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- $if (sizeof(t) op sizeof(t)) wheret andt, are type
suffix charactersdi | rd, etc.), and wherep is one of the rela-
tional operators=, ! =, <=, <, >=, or>.

Nesting is permitted. Conditional statements need not be left justified,

i.e., white space may be placed between the beginning of theBlohg (
and a$xx preprocessor directive.

* $%i f - Replaced byi f . Not evaluated until the second time the file is
processed. These may include$at se or $$el se block executed if
the$i f condition was false and should be terminated b§eardi f or
$$endi f .

 TY_PI XEL - Replaced by'Y_| NT, TY_REAL, and so on.
» SZ PI XEL - Replaced bysZ | NT, SZ_REAL, and so on.

* PI XEL - Replaced by the datatype keyword of the file currently being
generatedi(nt , r eal , etc.).

* XPI XEL - Replaced by the defined typ€QHAR, XI NT, etc.). Used in
generic C programs which will be called from the subset prepro¢essor
and which must manipulate the subset preprocessor datatypes.

» $PI XEL - Replaced by the strirfgj XEL (used to postpone substitution
until the next pass).

* | NDEF - Replaced by thé NDEF symbol for the current data type
(I NDEFS, | NDEFI , | NDEFL, | NDEF, or | NDEFX).

» $I NDEF - Replaced by the striflg\NDEF.

Doubly Generic Operators

The preprocessor can also be used to generate doubly generic operators
(operators which have two type 8xés). A good example is the type con-
version operatoacht xy, which converts a vector of typeto a vector of
typey. If there are seven datatypes $,i,! ,r, d, x), this generic family
will consist of 49 members. Doubly generic programs are preprocessed
once to expand the first §uf then each file generated by the first pass is
processed to expand the secondisuDn the Unix system, this might be
done by a command such as

generic acht.x; generic -p dir/ acht[silrd].x
rmacht[silrd].x

This would expan@cht in the current directory (generating five files),
then expand each of tlae ht $t files in the subdirectorgli r/ , creating a
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total of 25 files in the subdirectorhe final command removes the 5 inter-
mediate files.

For an example of double generic code, see source foogsgroce-
dure familyacht () invops$acht . gx.

Parameter Files

Each logical task that reads parameters from the cl eéBmgay spec-
ify attributes of those parameters usingparameter file Parameter
attributes include the name, data type, default value, and others. The file is
a text file created by the programmer and should be located in the same
directory as the physical task. There is one parameter file for each logical
task. Its root name is the same as the name of the associated logical task
and there is an extensiompar . Each task parameter is described by an
entry in the parameter file consisting of positional fields separated by com-
mas:

nane, t ype, node, val ue, m ni num maxi num pr onpt

All of the fields aftervalue are optional. Fields may be omitted with
adjacent commas.

* name - The parameter name as known to the cl and to the application
task. This is the value of the string used in ¢he cl get T() and
cl put T() procedures. Examples of code to read task parameters are in
“Interaction with the cl — clio” on pagéb.

* type - The data type of the paramet€&hat is, the type as known to the
cl. Note that thisieed notnatch the data type of the corresponding SPP
variable used in the application, but it makes sense to do so. This
attribute takes a string value representing the type.
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String Value Data Type

b Boolean

[ Integer

r Floating point

S String

f File name
struct Structure

gcur Graphics cursor
i ncur Image cursor
pset Parameter set

Table 4.2: cl Parameter Data Types.

Note that there is no distinction between sizes of numeric parameters; i.e.,
there is no concept of a “short” integer or a “double precision” floating
point parameteiThe charactetr preceding a type attribute indicates a “list
structured” parameterhe cursor parameters must be declared as list struc-
tured:* gcur and*i ncur. A pset specifies a pointer to another parameter
file. See the documeNhamed External Parameter Setsin the CL [Tody86]

for a complete description (on line in the IRAF fllec$pset . ns).

* mode - The manner in which the cl handi@®mpting andlearning of
the parameter

- @ - Query the user each time. Prompt for the parameter value even
if the default is not null.

- | - Learn the value of the paramet8tore the value as the new
default value.

- a - Automatically take the mode of the next higher level in the cl,
such as the task, package or the cl itself.

- h-Hide any prompting for the parameter value unless the cl cannot
resolve the default value.

» value - The default or initial value for the parameter

* minimum - The minimum acceptable value for the paramétethe
entered value is smallethe cl will prompt again. In addition, a string
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type parameter may be defined with an “enumeration string” as the min-
imum value. The parametervalue may then take amly one of the
enumerated values. The enumeration string is enclosed in quotes and
each enumerated value should be separated by pipe charpgitéos (
example:

color,s, h,"white", "white| bl ack| red| green| bl ue",,
"G aphics color”

* maximum - The maximum acceptable value for the paramdétehe
entered value is lger, the cl will prompt again.

e prompt - The string printed by the cl as part of the prompt to describe
the parameterThis may be enclosed in double quotes, required if the
string contains commas.

There are other fields as well that are slightly beyond this brief explana-
tion. For a more detailed explanation of parameter files and parameter
fields, see th€L Programmeis Manual[Downey82], a copy of which is
on line in the fild r af $doc/ cl man. ns.

Package Structure

Tasksin IRAF (and external packages such as STSDAS) ganaed
by packagein the cl. The structure directories containing the source and
run-time files reflects the package structure apparent from the cl. For exam-
ple, in the case of STSDAS, each package resides in a directory under the
st sdas root directory just as the STSDAS packages agarozed under
thest sdas package in the cl. There are several files common to the pack-
age as a whole and several similar files required for each task in the pack-
age. These files need to be modified when installing a new task. The
required common files in the package directory are:

» package. cl - Package cl procedure, cl task definitions
» X_packagex - SPP task definitions
* mkpkg - How to build the package

In the above file names, the name of the package is used in place of
package For example, thpl aypen package in STSDAS is in the direc-
tory st sdas$pkg/ pl aypen and the procedure script is callpbay-
pen. cl . In addition, documentation files exist in the package level
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directory as well as doc directory containing individual help files for the
tasks in the package.

package. hd - Help database pointers

package.hlp - Package level help

package.men - Package menu, one line task descriptions

doc - Directory containing task help files

Tasks in the Package

Each task has additional files, the type of which depends on the nature
of the task. These files would be added when you install a new task. Each
task must also have entries in the package files. A cl procedure task
requires only aask. cl file in the package directgrgontaining the cl
statements and parameter definitions. For exangplsconl ab. cl in
thepl aypen package. It also requiresask. hl p file in thedoc subdi-
rectory An SPP (physical) task requires SPP source, at least one source
file, by convention called _task. x (with task replaced by the task name)
pl aypen$t _wcsl ab. x, for example. Additional source files may
reside in the package directory or in subdirectories. The task may use an
include (header) file with the namask. h, pl aypen$wcsl ab. h, e.g.

Each task requires a parameter file (unless it is a script, defineddly a
file), task. par, containing definitions of the task parameters, such as
pl aypen$wcsl ab. par. Thedoc directory contains the task help files,
one for each task in the package.

Implementation

The procedure, then, is to develop the application in a private directory
with a structure similar to the intended getr package. Development
should be done in a local user directory rather than the system directories,
not even the development system. Use an existing package as an example
of how to proceed. When you are ready to install the package, copy the task
files to the intended package directory and edit the existing package files to
include references to the new package. Rkipkg to rebuild the package
with the changes (the added task). When you are satisfied that things work,
runnkpkg i nstall to move the executable to the appropriate binaries
directory
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Constants

-I-he SPP language includes a number of predefined symbolic con-
stants and macro definitions. These allow SPP programs to use keyword
names for commonly used values. Included are various machine dependent
constants describing the hardware and data types. Other symbolic constants
are used for basic file 1/0. All predefined constants are of type infdyer
include files described here are automatically included when an SPP pro-
gram is compiled.

Language Definitions

The value of these definitions may vary from one machine and host
operating system to anoth&PP code using the symbolic constants need
not be modified, howevewhen porting software. The include file defining
these macros iBl i b$i r af . h. However it is included implicitly by xc
and the definitions are available at all timesudo not need to include it
explicitly.

175
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Generic Constants

Constant Meaning

ARB Arbitrary; array dimension
BOF Beginning of file

BOFL Beginning of file

EOF End of file

EOFL End of file

ECS End of string

ECT End of tape

ERR Error status return

NO Opposite of YES (int flag)
YES Opposite of NO (int flag)
X Status return, opposite of ERR
NULL Invalid pointer

Table A.1: Generic Constants.
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Data Type Sizes

These macros define the sizes of the fundamental SPP data types in units
of char, the smallest addressable word.

Macro Size Defined

SZ_BOOL Number ofchar s perbool
SZ_CHAR Number ofchar s perchar

SZ_ SHORT Number ofchar s pershort

SZ_|I NT Number ofchar s peri nt
SZ_LONG Number ofchar s perl ong

SZ REAL Number ofchar s perr eal
SZ_DOUBLE Number ofchar s perdoubl e
SZ_COWPLEX Number ofchar s perconpl ex

SZ PO NTER Number ofchar s perpoi nt er
SZ_STRUCT Number ofchar s perst r uct
SZ_USHORT Number ofchar s perushort
SZ_FNAMVE Maximum number o€har s in a file name
SZ LI NE Maximum number o€har s in a line
SZ_ PATHNANME OS dependent file name size
SZ_COMVAND Maximum size of command block

Table A.2: Sizes of SPP Data Types.

Data Type Codes

The data type codes are used, for example, in dynamic memory alloca-
tion, in which it is necessary to know how many bytes each value occupies.
The sizes are in units afhar s, where achar usually occupies two
bytes. The lines shown Exam@el will allocate ashort anddoubl e
buffer, each ofsi ze elements. The resulting memory teu will consist
of different numbers of bytes, but will logically contain the same number
of elements.
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poi nter sbuf, dbuf
I nt si ze
begin

call malloc (sbuf, size, TY_SHORT)
call nmalloc (dbuf, size, TY_DOUBLE)

call nfree (sbuf, TY_SHORT)
call nfree (dbuf, TY_DOUBLE)
end

Example A.1: Using Data Type Codes.

Code Data Type

TY_BOOL Boolean

TY_CHAR Character

TY_SHORT Short integer

TY_INT Integer

TY_LONG Long integer

TY_REAL Single precision real

TY_DOUBLE Double precision rea
TY_COWPLEX Complex

TY_PA NTER Pointer

TY_STRUCT Structure

TY_USHORT Unsigned short integer (for image I/0 only)
TY_UBYTE Unsigned byte (for image /O only)

Table A.3: Data Type Codes.
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File and Image I/O
The macros described in this section are used in accessing text files,
binary files, and images.

File Types
The file type specifies the kind of file to be read or written.

Macro File Type
TEXT_FI LE Plain text (ASCII)
Bl NARY_FI LE Binary, host dependent

DI RECTORY_FI LE Directory
STATI C FI LE

SPOCOL_FI LE Internal, no permanent location

RANDOM

SEQUENTI AL

Table A.4: File Types.
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Filel/O Modes

The mode parameters are used on opening the file and specify the man-
ner in which the file will be accessed.

Parameter 1/O Mode

READ ONLY Read onlyno output
READ WRI TE Read and write

WRI TE_ONLY Write only, no input
APPEND Append to an existing file
NEW FI LE New file

TEMP_FI LE Temporary file, deleted at task end
NEW_COPY Copy of an existing file
NEW | MTE Alias for NEW FI LE
NEW STRUCT

NEW TAPE

Table A.5: File I/O Modes.

/O Streams

Stream Name

Contents

CLIN Standard input of the physical task

cLaut Standard output of the physical task

STDI N Standard input

STDOUT Standard output

STDERR Standard error

STDGRAPH Standard graph (usually a graphics terminal)
STDI MAGE Standard image (usually an image display)
STDPLOT Standard plot (usually a hardcopy plotter)

Table A.6: 1/O Streams.
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The following example (Exampl.2) opens two files. The first state-
ment opens for reading an existing text file whose name is specified in the
char variablef nanme. The second statement opens a new image whose
name will be the string inrmane.

int fp # File descriptor
poi nter ip # | mage descri ptor
char fnane[ SZ_FNAMVE] # File nane

char fnane[ SZ_FNAME] # | mage nane

int open()

poi nt er i mmap()

begin

# Open the text file
fp = open (fnanme, READ ONLY, TEXT_FILE)

# Open the inmge
ip = immuap (i mame, NEWFILE, O

call close (fp)
call imunmap (ip)
end

Example A.2: Opening Files.

Indefinites

Indefinite values may be used to flag data for specific purpose, to
exclude from further consideration or indicate an efmrexample. Each
SPP data type has its own indefinite value. The actual value of the various
indefinites may be diérent, so the appropriate one must be used. In addi-
tion, there are macro functions to test values aghNSEF.
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Values

Value

Data Type

| NDEFS
| NDEFL

Short integer

Long integer

| NDEFI
| NDEFR

Integer

Single precision real

| NDEFD
| NDEFX

Double precision real

Complex

| NDEF

Alias for | NDEFR

Table A.7: Indefinite Values.

Logical Functions

These macros @ble A.8) define functions to test values against indefi-
nite. There is a macro for each SPP data type. Exalshows how to
execute a block of code in the case where a particular value is indefinite.

Function

Data Type

|'S_| NDEFS()
|'S_| NDEFL()

Short integer

Long integer

|'S_1 NDEFI ()
|'S_| NDEFR()

Integer

Single precision real

|'S_| NDEFDX )
|'S_1 NDEFX()

Double precision real

Complex

|'S_| NDEF()

Alias for1 S_I NDEFR()

Table A.8: Logical Functions.
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short sval # A short integer
real rval # A single precision rea
begi n

if (1S_INDEF(rval)) {
# If rval is indefinite, execute this block

}
if (I1S_INDEFS(sval)) {
# |1f sval is indefinite, execute this bl ock

}

end

Example A.3: Executing Code with INDEF Values.

Pointer Conversion

These macros are used for pointer conversions in data structures. Since
all dynamically allocated arrays share the same memory (implemented by
FortranCOVMON andEQUI VALENCE), the correct det to data types hav-
ing different word sizes must be computed. These macros perform that
computation. Note that there is R8l or P2R since these are assumed to
be the same size according to the Fortran standard. See “Macro Defini-
tions” on pagel6 for more discussion of SPP macros.

Macro Purpose

P2C() Convert pointer to character

P2S() Convert pointer to short integer

P2L() Convert pointer to long integer

P2D() Convert pointer to double precision real
P2X() Convert pointer to complex

Table A.9: Pointer Conversion Macros.

The following example fromh i b$gi 0. h is part of the definition of
the gio data structure that maintains information about a plot. It defines
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(among other things) a string containing a label format. This is stored in a
dynamically allocatedhar array

define GL_AXI SW DTH Ment [ $1+16] # linewidth of axis
define G._TI CKLABELSI ZE Ment [ $1+17] # char size of tick |abels
defi ne G__TI CKFORMAT Menc[ P2C($1+18)] # printf format of ticks

Example A.4: GIO Data Structures.

Machine Parameters

These macros relate to values specific to the host system architecture.
These are defined iml i b$nach. h and must be included with the fol-
lowing statement if they are to be used in code:

i ncl ude <mach. h>

Parameter Contents

SZB_CHAR Machine bytes perhar

SZB ADDR Machine bytes per address increment
SZ_VVPAGE Page size (1 if no virtual memory)

MAX_DI A TS Maximum digits in a number

NDI G TS RP Number of digits of real precision

NDI G TS_DP Number of digits of precision (double)
MAX_EXPONENT Maximum exponent, base 10
MAX_EXPONENTR Maximum exponent for single precision real
MAX_EXPONENTD Maximum exponent for double precision real

Table A.10: Machine Parameters.
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Extreme Numbers

Parameter Contents

MAX_SHORT Largest short integer

MAX | NT Largest integer

MAX_LONG Largest long integer

MAX_REAL Largest single precision real; anythingdar isl NDEF
MAX_DOUBLE Largest double precision real

NBI TS_BYTE Number of bits in a machine byte
NBI TS_SHORT Number of bits in a short integer
NBI TS | NT Number of bits in an integer
EPSI LONR Smallesiesuch that1 €> 1

EPSI LOND Double precision epsilon

EPSI LON Alias for EPSI LONR

Table A.11: Extreme Numbers.

Byte Swapping

Is byte swapping needed for a 2 or 4 byte MIl integer or a 4 or 8 byte
IEEE floating to convert to or from MII format on this machine?

Parameter Contents

BYTE_SWAP2 Byte swap 2 byte Ml integer?
BYTE_SWAP4 Byte swap 4 byte Ml integer?

| EEE_SWAP4 Byte swap 4 byte IEEE integer?
| EEE_SWAPS Byte swap 8 byte IEEE integer?
| EEE_USED Use IEEE?

Table A.12: Byte Swapping Boolean Parameters.
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Mathematical Constants

Definitions of various mathematical constants arélinb$nat h. h.
Use the following statement to use the macros:

i ncl ude <mat h. h>

Values (listed in dble A.13) are given to 20 decimal places and therefore
may be assigned toeal or doubl e variables without loss of precision.
However note that they are not explicitly double precision, in certain
expressions in which implicit data type conversion occurs may result in
truncation of precision. The definitions are from Abramowitz and Stegun,
Handbook of Mathematical Functions, Chapter 1 [Abramowitz65].
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Constant Value

SQRTOF2 J2

E e

EXP_PI e"

LN 2 In2

LN_10 In10

LN_PI Inmt

LOG E loge

Pl T

TWOPI 2n

FOURPI an

HALFPI 2

SQRTOFPI Jn

RADI AN radian (180°/ )

RADTODEG Convert radians to degrees
DEGTORAD Convert degrees to radians
GAMVA y (Eulers Constant )
LN_GAMVA Iny

EXP_GAMVA e

Table A.13: Mathematical Constants.

Most of these are constants, except for the maRARSI ODEG and
DEGTORAD which convert between degrees and radians. For example the
following procedure converts angles in an array from radians to degrees:
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i ncl ude <mat h. h>
procedure vradeg (rads, degs, nelem
real rads[ ARB] # Angles in radians
real degs[ ARB] # Angl es in degrees
i nt nel em # Size of array
i nt i
begin
doi =1, nelem

degs[i] = RADTODEGrads[i])

end

Example A.5: Converting Radians to Degrees.

Note that one might alternately useaps procedure to accomplish the
same result.

Character and String-Related Definitions

Character T ypes

These macro definitions dble A.14) test whether a single character
(typechar) is a member of a particular class of characters, lower case let-
ter or white space, for example. They resolve to a logmabl() value
which may be used in boolean expressions, including conditional state-
ments such ashi | e orf or. They are defined ihi b$ct ype. h and, if
they are to be used in code, must be included with the statement:

i ncl ude <ctype. h>
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Macro Definition

I S UPPER() Upper case letters (A-2)?

IS LOAER() Lower case letter (a-2)?

IS DAT() Numeral (0-9)?

I'S_PRINT() Printable character (I-~)?

IS CNTRL() Control character (CTRL-A - CTRL-_)?

IS ASCII () ASCII character (values 0-127 decimal)?
I'S_ALPHA Alphabetic character (A-Z or a-z)?

'S ALNUM) Alphanumeric character (A-Z, a-z, or 0-9)?
IS VWH TE() White space (space or tab)?
TO_UPPER() Convert to upper case

TO LOVER() Convert to lower case

TO | NTEEH) Convert character to digit

TO DI d T() Convert numeral to ASCII value

Table A.14: Character Types.

Note that these definitions work for ASCII, but not for EBCDIC (IBM).
By using macros, this machine dependent knowledge of the character set is

concentrated into a single file. For example
for (ip =1, ISWITE(str[ip]); ip=ip + 1)

Finds the first non-white-space character in the sttrg

Token Definitions

Tokens are the smallest recognized string fragments such as a word,
number or operatar The encoded values of the recognized tokens is
defined in the include filei b$ct ot ok. h. See “Internal Formatting” on
page85.
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Token Value | nterpretation

TOK_I DENTI FIER  [A-Za-z][A-Za-z0-9_.$]*

TOK_NUMBER 0-9][-+0-9.:xXa-fA-F]*
TOK_OPERATOR All other printable sequences
TOK_PUNCTUATI ON  [:,;] or any control character
TOK_STRI NG

TOK_CHARCON \n', etc.

TOK_ECS End of string

TOK_NEWLI NE End of line

TOK_UNKNOWN9 Control characters

Table A.15: Tokens.

VOS Library Includes

Most VOS library package have an associated include file for constants
and structures unique to that package. These are the most commonly
needed include files for various packages.

Package Include Files

etc time.h

fntio pattern. h, evexpr.h
gio gset.h

imo i mhdr. h

Table A.16: VOS Library Includes.
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Examples

Here are a few simple SPP applications. They illustrate a range of
tasks including image /O, cl 1/O, dynamic memoind graphics,
including cursor interaction. They are complete, including a task statement
to implement cl tasks. More examples are provided in Rob Sesan’
Introductory Usels Guide to IRAF SPP Bgramming[Seaman92].

"Hello World"

One useful way to get started with a language is to build and run a
simple program, before attempting to learn all the details. It often provides
an introduction to the flavor of the language and its syntax and can provide
a template for developing useful applications. Here is the SPP version of
the common “hello world” program. It prints the tekiEl | 0 wor | d” on
the use’s terminal.

# Sinple programto print "hello, world" on the standard out put

task hello # CL cal | abl e task
procedure hello() # conmon procedure
begin

call printf ("hello, world\n")
end

Example B.1: Hello World Example.

The text of this program would be placed in a file with the extension
“. x” and compiled with the command xc (X Compiler) in the host system
or in the IRAF cl as follows:

xc hello. x

The xc compiler will translate the program into Fortran, call the Fortran
compiler to generate the object filee{ | 0. 0), and call the loader to link
the object file with modules from the IRAF system libraries to produce the
executable program. xc may be used to compile C and Fortran programs as

191



192  Appendix B: Examples

well as SPP programs, and in general behaves very muatclibef 77

(note that the o flag is not required; by default the name of the output
module is the base name of the first file name on the command line). The
- f flag may be used to inspect the Fortran created by the preprocessor; this
is sometimes necessary to interpret error messages frdeid Theompiler

Finally, to run the program, you may define it as a task in the cl by using
thet ask statement:

task $hello = hello.e

Then run it by typindnel | o.

cl Interaction

ExampleB.2 demonstrates simple useabifo, reading and writing cl
parameters and simpimio, reading an image. While the application does

little significant, it illustrates a task that analyzes an image and extracts
information from it.

The procedure called by the above procedure to perform the operation
on the images is shown in ExamBes.
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inclu
proce
# Thi

# 1-d
# 10

# header and wites to STDOUT. 2 input paraneters: inmage file & header paramfile

char
poi nt
i nt
poi nt
char
r eal
real
poi nt
real

begi n

end

de <inmhdr. h>
dure bones ()
s is a skeleton (bare bones) of a task to do something with a

i mensi onal inmage and get a single value for an answer. It wites
STDOUT & to a paraneter. It gets an arbitrary paraneter fromthe

i ni ng[ SZ_FNAME] # I nput image file name
er im # | mage descri ptor

npts # Nunber of pixels
er line # Pixels

par ani SZ_LI NE] # Header paraneter name

par val # Paraneter val ue

answer # The result
er immap(), imglir() # Function decl arations

i mgetr ()
call clgetr ("imge", ininmg, SZ_ FNAME) # Get input inmage nanme
im= immp (ininmg, READ ONLY, 0) # Open i nmage
npts = I M LEN(im1) # Assune 1-D i nmmge
call clgstr ("parant, param SZ_LINE) # Get header param nane
parval = ingetr (im paranm # Get header paraneter

call printf ("% = %\n")
call pargstr (param
call pargr (parval)

# Read the data into dynam c nmenory

line = imgllr (im

# Use data. You can plug in Fortran subroutine for stuff and treat

# the first argunent as a REAL array

call stuff (Menr[line], npts, answer)

# Wite answer

call printf ("The answer is: %\n")
call pargr (answer)

# Put answer in cl paraneter

call clputr ("answer", answer)

# cl ose the imge

call i munmap(im

Example B.2: Simple Use of clio.

procedure stuff (pixels, npts, answer)

# finds the average of the input pixel vector.

r eal pi xel s[ ARB]
int npts

r eal answer

real si gma
begin

call aavgr (pixels, npts, answer, sigmm)
end

# This is a dumy applications routine for the bones task.

It just

Example B.3: Procedure Called by Bones.
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A Simple Filter

This example (ExamplB.4) illustrates a simplélter. That is, a task
that takes a file as input and produces a similar but changed file on output.
In this case the input and output are IRAF images and the operation is the
absolute value. Note particularly the use of dynamic memory allocation
and basic image 1/0.
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i ncl ude <i mhdr. h>
procedure filter ()

# Skeleton task to processs a 1-D i mage and use another file for output. This

# type of task is called a filter. The output file is simlar to the input file,

# but with different values. This task will work with i mages of any dinensionality.
# There are two input paranmeters: the input file name and the output file name.

poi nter sp # Menory stack pointer

pointer if, ofn # File nane string pointers

pointer im om # | mage descriptors

I nt npts, nrow # Nunber of pixels

i nt 1 ne # Li ne nunber

pointer il, ol # Pixel s

pointer inmmap(), inmgl2r(), inpl2r() # Decl are functions
begin

# Initialize the dynami c nenory stack
call smark (sp)

call salloc (ifn, SZ_LINE, TY_CHAR)
call salloc (ofn, SZ LINE, TY_CHAR

# Get the input image nanes
call clgstr ("input", Ment[ifn], SZ_FNAME)
call clgstr ("output", Menc[ofn], SZ FNAME)

# Open the imges
|m—|rrmap(|\/Em:[ifn], READ_ONLY, 0)
om = immap (Menc[ofn], NEWCOPY, im

# Find the image size (treat it as 2-D inmge)

npts = I M LEN(i m 1)

nrow = | M LEN(i m 2)

# Do for each line in inage

do line =1, nrow
il =imgl2r (im line) # Read data into dynam c nenory
ol =inpl2r (om Iline) # Al locate output inmage |ine
# Do sonething with data...can be SPP or Fortran subroutine.
call fstuff (Menv[il], Menr[ol], npts)

call inmunmap (im # C ose i mages

call imunmap (om

call sfree (sp) # Free dynam ¢ nenory stack

end
procedure fstuff (input, output, npts)

# Dunmry application routine for filter task--(find absol ute val ue)
r eal i nput [ ARB], out put[ ARB]
i nt npts
begi n
call aabsr (input, output, npts) # Use VOPS absol ute val ue procedure
end

Example B.4: Sample Filter.
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Image 1/O

The following is a complete example that demonstrates line by line
image 1/0O by copying an existing image to a new image. Note that the
procedure works the same regardless of the dimensionality and data type of
the images. This is the code for the IRMRcopy task in theimages
package which is inmages$i nuti | /i ntopy. x. There are comments
scattered interspersed with the code to clarify it.

| M_MAXDI M and other constants used for image I/O are defined in
<i mhdr . h>. Other constants such ARB andSZ_FNANE are defined in

i raf . h which needs not be included explicitly

i ncl ude <i mhdr. h>
# | MG | MCOPY -- Copy an inmge. Use sequential routines to permt
# copying i mages of any dinension. performpixel I/0Oin the
# datatype of the inmge, to avoi d unnecessary type conversion.
procedure ing_i ncopy (inmagel, image2, verbose)
char i mgel[ ARB] # I nput inage
char i mage2[ ARB] # CQut put inage
bool ver bose # Print the operations
i nt npi x, junk
poi nter bufl, buf2, inl, inR
poi nter sp, inmenp, section
| ong vli[ I M MAXDI M, v2[1MMAXD M
# Declare function calls ] ) )
i nt imgnl s(), imgnl1 (), imgnlr(), imnld(), imgnlx()
i nt inpnls(), inpnll (), inpnlr(), inmpnld(), inpnlx()
poi nter i mmap()
begin
call smark (sp)
call salloc (inmenp, SZ_PATHNAME, TY_CHAR)
call salloc (section, SZ_FNAVE, TY_CHAR)
# |f verbose, print operation
if (verbose) {
call eprintf ("% -> %\n")
call pargstr (inmagel)
call pargstr (inmage2)
}
# Map the input imge
im. = inmmap (inagel, READ ONLY, O0)
# | f output has section part, wite only inmage section. O herw se,
# get tenporary inmage & map as copy of existing inmage. Copy image
# image to tenporary and unnap i nages
call imgsection (image2, Ment|[section], SZ_ FNAME)
(Continued...)

Example B.5: Image I/0.
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i mgsection() returns only themage section from an image file
name. Ifi mmge2 = nosai c. i nmh[100: 200, 150: 350], then the
image section i$ 100: 200, 150: 350] and we want to overwrite this
space with the same space from the input image, i.e., pixels 100 to 200
inclusive in the first axis, and rows 150 to 350 in the second axis. If the
output image already exists, the access mo&READ WRI TE. If it does
not exist open it as BEW COPY of an existing image, passing the open
image descriptori L, to i mmap() . All necessary header information
will be copied.

The arrayvl keeps track of the current line to read from imagel by
imgnl () and v2 keeps track of the line written tomage2 using
i mpnl (). anovkl () initializes the vectors with the long integer
constant 1.

The macro defined constdri¥l LEN contains the size of the image. Itis
defined in<i mhdr . h>. It is a vector storing the size of each dimension up
to the maximum number of dimensions supportethby (seven). There is
a case for each data type to preserve the precision of the pixels.

if (Ment[section] !'= ECS) {
call strcpy (image2, Menc[intenp], SZ PATHNAME)
im2 = inmmp (i mage2, READ WRI TE, 0)
} else {
call xt_nkintenp (imagel, inmage2, Menc[intenp], SZ_PATHNAME)
im = inmap (image2, NEW COPY, indl)
}

# Setup start vector for sequential reads and wites
call amovkl (long(1), vi, | M MAXD M

call amovkl (long(1), v2, | M MAXD M

# Copy i nmage

npi x = I M LEN(i nL, 1)

switch (I MPIXTYPE(inl)) {
case TY_SHORT:
while (imgnls, (im, bufl, vl) != EOF) {
junk = inmpnls (inm2, buf2, v2)
call anovs (Mens[bufl], Mens[buf2], npix)

}
case TY_USHORT, TY_INT, TY_LONG
while (imgnll (iml, bufl, v1) !'= EOF) {
junk =inpnll (inm2, buf2, v2)
call amovl (Mem [bufl], Mem [buf2], npix)

} (Continued...)

Example B.5 (Continued): Image 1/0.

The pixel type unsigned shoiitY_USHORT) will be copied to a bdér
of type long. The routinengnl | () (the last letter denote the pixel type)
returns a pointer ibuf 1 that points to the beginning of the current line in
the input image. The routinenpnl | () returns a pointebuf 2 that
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points to the beginning of the next line in the output imagav| ()
copiesnpi x pixel values from the input biefr to the output one. The input
and output bdérs inMem [ ] have already been allocated in memory by
i mgnl | () andi npnl | (). The loops will be repeated until all the lines

have been copied, in which caseEDk is returned.

end

case TY_REAL:
while (inmgnlr (inl, bufl, vl) !'= EOF) {
junk = inmpnlr (in2, buf2, v2)
Menr [ buf 2],

call anmovr (Menr[bufl], npi x)

}
case TY_DOUBLE:

while (ingnld (inl, bufl, vl) !'= EOF) {
junk = inmpnld (in2, buf2, v2)
call anmovd (Mend[ buf 1], Mend[buf2], npix)

}
case TY_COWPLEX:
while (inmgnlx (inl, bufl, vl) !'= EOF) {
junk = inmpnlx (in2, buf2, v2)
call anmovx (Menx[bufl], Menx[buf2], npix)
defaul t:
call error (1, "unknown pixel datatype")
}
# Unmap the i mages
call inmunmap (inR)
call imunmap (ind)
call xt_delintenp (inage2, Menc[intenp])

Example B.5 (Continued): Image 1/O.

Basic Graphics

ExampleB.7, below demonstrate a very simptgo (IRAF graphics)
application. It draws a box in graphics and writes a text string. It follows
the conventions of most IRAF graphics applications. The graphics device
is specified in the task paramewevi ce and the graphics stream is
STDGRAPH. Note thagopen() returns a pointer and this value is passed
to all subsequent graphics procedures. In addition, the include file
<gset . h> is specified. This contairgef i nes for gio macros such as

G_TXSI ZE.
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inclu

proce

# HELLO -- Denonstrates sinple GO Draws a box and a text string

poi nt
char
poi nt

begi n

end

de <gset. h>

dure hello ()

er gp # Graphi cs descri ptor
devi ce[ SZ_LI NE] # Device nane string
er gopen()

# Cet device nanme (nominally "stdgraph")
call clgstr ("device", device, SZ LINE)

# Open graphics
gp = gopen (device, NEWFILE, STDGRAPH)

# Set the viewport
call gsview (gp, 0.2, 0.8, 0.2, 0.8)

# Set the data wi ndow
call gswind ("gp, 0.0, 1.0, 0.0, 1.0)

# Draw a box around vi ewport

call ganove (gp, 0.0, 1.0)
call gadraw (gp, 1.0, 0.0)
call gadraw (gp, 1.0, 1.0)
call gadraw (gp, 0.0, 1.0)
call gadrwa (gp, 0.0, 0.0)

# Set graphics paraneters: Center text horizontally
call gseti (gp, G TXHJUSTIFY, GI_CENTER)

# Set size of text
call gsetr (gp, G TXTSIZE, 3.0)

# Draw a text string
call gtext (gp, 0.5, 0.5, "Hello World", ECS)

# Cl ose graphics
cal |l gclose (gp)

Example B.6: Basic Graphics.



200 Appendix B: Examples

Interactive Graphics

This example builds somewhat on the previous example. In addition to
simply writing graphics, it uses tled gcur () procedure to return cursor
coordinates to the application. Depending upon how the task is run, this is
resolved in various ways. The usual situation is for the task to be run from
the cl with the interactive graphics cursor activated. The user would then
move the cursor and pressing a keyboard key would result in the
coordinates of the cursor being returned to the task.

Thecl gcur () procedure is alio function that returns a value that is
ECF upon the end of cursor interaction. Note that the function call is within
awhi | e loop that terminates on the valdéF-.

Note also that several cursor keys have been defined for the task. That
is, when the user types that key with the graphics cursor active, the task
performs some function. These functions are in addition to the built-in
functions of the IRAF graphics cursarhe implementation of the cursor
keys is also an example of thei t ch ...case syntax.
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i ncl

defi
defi
defi
defi
defi

ude <gset. h>

ne UP

ne DOMWN

ne LEFT

ne RI GHT

ne DEF_SI ZE

orwWNR

procedure arrows ()

# ARROAS -- Denonstrates interactive capabilities of GO

# Dr

aw arrows in cardinal directions at coordi nates of cursor.

# Optionally, specify size of arroww th a col on comrand.
# Cursor keys recogni zed:

# d Down arrow

# | Left arrow

# q Quit

# r Right arrow

# u Up arrow

# : Col on command

# :s size Change arrow size

poi nter gp # Graphics descriptor
char devi ce[ SZ_LI NE] # Device name string
real WX, Wy # Cursor coordinates in WS
i nt WCS # Graphics wcs

i nt key # Cursor key val ue

char conmand[ SZ_LI NE] # Cursor command string
char crdwor d[ SZ_LI NE] # Conmand word

i nt ip # Character in string

r eal XS, ys, Size # Arrow size (in NDC)
string coord "coord" # Cursor parameter name
poi nt er gopen()

i nt ctowd(), ctor(), clgcur()

begin

# Get graphics device fromcl, nomnally "stdgraph"
call clgstr ("device", device, SZ LINE)

# Open graphi cs device

gp = gopen (device, NEWFILE, STDGRAPH)

# Draw coordi nate axes to orient ourselves

call glabax (gp, EOCS, ECS, ECS)

# Set starting arrow size

xs = DEF_SI ZE )

ys = DEF_SI ZE (Continued...)

Example B.7: Interactive Graphics.

201
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while (clgcur  (coord, wx, wy, wcs, key, command, SZ LINE) != EOF) {
# Cursor mode loop. interpret cursor commands until EOF.
# Case statement switches on cursor key character value
switch  (key) {
case 'd
call arrow (gp, DOWN,wx, wy, XS, VYs) # Down
case I
call arrow (gp, LEFT, wx, wy, Xs, Vys) # Left
case I
call arrow (gp, RIGHT, wx, wy, Xs, VYs) # Right
case 'Q:
break # Quit
case U
call arrow (gp, UP, wx, wy, Xs, Vs) # Up
case
call  printf (command) # Parse command
ip =1
if (ctoword (command, ip, cmdwrd, SZ_LINE) ,+ O0)
next # No command on line
# Case switches on 1st char of 1st word on command line
switch  (cmdwrd[1]) {
case 's" # Change arrow size
if (ctor (bommand, ip, size) > 0) }
call  printf ("%f")
call pargr (size)
Xs = size
ys = size
}
}
} }
call gclose (gp) # Close graphics
end (Continued...)

Example B.7 (Continued): Interactive Graphics
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procedure

# ARROWN--- Draw arrow as gi o marker. 4 predefined markers: arrow pointing

# in each

poi nter gp # Graphi cs descriptor
i nt direc # Arrow direction (paraneterized)
real X, Y # WCS of arrow center
real Xsi ze, ysize # Arrow size in NDC
define NPTS 5 # Nunber of points per polyline
define NA 4 # Nunber of markers
define NA 4 # Nunmber of markers
real px[ NPTS, NA], py[ NPTS, NA] # Arrow pol ylines
dat a px /0.5 0.5, 0.25, 0.5, 0.75 # Up (X)
0.5, 0.5, 0.25, 0.5, 0.75, # Down
1.0, 0.0, 0.5, 0.0, 0.5 # Left
0.0, 1.0, 0.5, 1.0, 0.5/ # Ri ght
dat a py /0.0, 1.0, 0.5, 1.0, 0.5, # Up (Y)
1.0, 0.0, 0.5, 0.0, 0.5, # Down
0.5, 0.5, 0.75, 0.5, 0.25, # Left
0.5, 0.5, 0.75, 0.5, 0.25/ # Ri ght

begi n
cal l
X,
end

arrow (gp, direc, X, y, xsize, ysize)

cardinal direction. Define mark as polyline to pass to gumark ().

numark (gp, px[1,direc], py[l,direc], NPTS,
Yy, Xsize, ysize, NO

Example B.7 (Continued): Interactive Graphics: the Arrow Procedure.

Task

The following code is a task statement that creates a task for the above
procedures.

t ask arr ows,
bones,
filter,
hello

To compile the code, use xc directly or ndgkg, which also uses xc.
If you extract the SPP code in the previous sections in files named
bones. x, filter.x, hello.x, arrows.x, and x_tutor. X,
respectivelythe following command will compile and link them:

Xc x_tutor.x bones.x filter.x hello.x arrows. x

producingx_t ut or . e as the executableo¥ can either run this directly
or define tasks in the cl:

t ask arrows, bones, filter, hello = x_tutor.e



B.12.1 mkpkg

The following is a samplekpkg file to make the package comprising
the above examples. It creates a libratyt(or. a) containing the
procedures and links a single executable (physical task) containing several
logical tasks.

$call relink
$exi t
updat e:
$call relink
relink:
$update tutor.a
$cal | I i nktutor
l'i nkt utor:
$omake x_tutor. x
$link x_tutor.o tutor.a -0 xx_tutor.e
tutor. a:

Example B.8: Sample mkpkg File.



APPENDIX C:

Tips and
Pitfalls

-I-his reference documents the major features of the SPP language.
However it is necessarily incomplete. For the most complete and
up-to-date details of any specific library package or procedure, consult the
on-line source and documentation. There is high-level documentation in
the IRAFdoc$ directory The source for each library package described
here,imio, clio, etc., resides in a separate directory in the IRAF hierarchy
having the name of the package. In addition, a cl environment variable is
defined for each library package. Thus, the source for imio is in the
directoryi m 0$. There is a directory containing documntation describing
the packages in@oc subdirectory of each library package and the source
also contains documentation.

Procedure Arguments

If a procedure has formal parameters, they should agree in both number
and type in the procedure declaration and when the procedure is called. In
particular beware ofshort or char parameters in gument lists. An
I nt may be passed as a parameter to a procedure expeStiRa inte-
ger on some machines, but this usag®igportable, and is not detected by
the compilerThe compiler does not verify that a procedure is declared and
used consistenthDo not use type coercion in procedure actuglii@ents.

Such as:

call foobar (..., short (intvar), ...)

In some cases, the coercion is not performed in passinggin@ent to
the procedure. A particular problem is using a literal (quoted) character in
the calling sequenct to a procedure expectingar such astri dx().
Such a literal is converted into an integer constant. On some systems, it
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won’t matter if the called procedure expects a long or short integeon
some, it will result in the wrong value passed.

Calling Fortran

Since SPP is preprocessed into Fortran, in most cases, it is quite
straightforward to call an existing Fortran subroutine from an SPP proce-
dure. The most important caution is the case of character strings. SPP
strings are not the same as Fortran strings. SPP strings are implemented as
arrays of integers. Howevethere are procedures available to transform
between the twof 77pak() converts an SPP string to a Fortran string,
andf 77upk() converts a Fortran string to an SPP string. Note that you
must declare the Fortran string in the SPP procedure with a Fortan state-
ment. This is possible with tRéescape character as the first character on a
line. This indicates to the xc compiler that the following statement should
not be processed but copied directly to the Fortran code. See Exadple
below

# Declare the Fortran string
Y%haracter*8  fstr

# Declare the SPP string

char sstr[ 8]
# Convert the SPP string to a Fortran string
call f77pak (sstr, fstr, 8)

# Call the Fortran subroutine
call forsub (fstr, ...)

Example C.9: Declaring a Fortran String in SPP.
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Character Strings

SPP strings are not scalar variables. Their value cannot be changed by
an assignment statement. Strings are, in fact, arrays of short integers, with
the additional complication of an extra element at the end for the ECS char-
acter. It is possible to declare strings with dynamic memory allocation. In
fact, is a common practice to use stack memory for temporary string stor-

age.

pointer sp
pointer infile, outfile
pointer errnsg

begi n
# Mark the nenory stack
call smark (sp)
# Allocate nenory for the strings
call salloc (infile, SZ FNAME, TY_CHAR)
call salloc (outfile, SZ_FNAME, TY_CHAR)

# Get strings fromthe cl
call clgstr ("infile", Menc[infile], SZ_ FNAME)
call clgstr ("outfile", Menc[outfile], SZ FNAME)

# Free the menory stack
call sfree (sp)
end

Example C.10: Stacking Memory for Temporary String Storage.

Arrays of Strings

It is possible to declare an array of strings, but remember that each
string element needs its own EGS character. Typically, the strings would be
allocated dynamically and referenced in a called procedure, as shown in
Example C.11.
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def ine  NUM_STR16 # Array size
def ine STR_SIZ 79 # String  size
# (note odd size to allow for EOS)

pointer  strarr # Pointer for array of strings
int arrsiz
begin

arrsiz = (STR_SIZE + 1) * NUM_STR

# Allocate string array

call malloc (strarr, arrsize, TY_CHAR)

call myproc (Memc|strarr], STR_SIZ, NUM_STR)
end
procedure  myproc (strarr, strsize, numstr)
char strarr[strsiz,numstr] # Array of strings
int strsiz # String  size
int numstr # Number of strings
begin
end

Example C.11: Referencing Dynamically Allocated Strings.

The important points to keep in mind are that strings implemented as
arrays ofchar s (short s), even though they are declared a fixed size,
they may not use the entire declared space. A special characterB@kie (
implemented as ASCINUL) is used as the string terminatbfost proce-
dures that require strings also take aguarent specifying the string
length. This does not mean that the entire declared string will be used, only
the maximum possible string size. There are a few important exceptions.

Characters vs. Strings

Note the distinction between single and double quoted characters. Sin-
gle quotes indicate the ASCII value of a single character and are treated as
anint scalar in processed SHPouble quoted strings are literal strings
and may only be specified as actual proceduenaents or the object of a
string  declaration. Using single quoted characters in placeabiaa
array can cause unexpected problem, for example in:

stridx ('X’, string)

X' is anint , while stridx() expects ahar . Other routines with
this problem includeingetc() andputc() . Note that the cast operator
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char ('’X) does not work! It translates iniot(120) . You should
use something like:
char x_char

X_char ='x’
i = stridx (x_char, string)

Formatted 1/O

Newlines are significant. Lines of output, 33 DOUTior example, is
separated by newlines, a carriage return and a line feedoririti)
procedure does not automatically issue a newline with every callmtist
explicitly write the newlines using the escape as part of the format
string. Otherwise, your output will be strung togetingther unintelligably
Actually, this can be useful, as you can use muligletf() calls to
build a single line of output. On input, a text file consists of lines delimited
by newlines. The file may be read line by line usyegliine() . The
newline terminating each line is returned as part of the string. Note that
getline() and putline() are two of the procedures dealing with
strings that do not have a string lengtguement. It is assumed that the
string bufer is allocated with the siz&Z LINE.

The % Character

To output a percent characté (using any of the formatted output pro-
cedures, use two adjacent percent charaéte¥®) the format string.

call printf ("Ratio: %f%%\n")
call pargr (ratio)

Results in:
Ratio: 12.34%
(assuming the value oétio is 12.34).

Buffered Output

Standard formatted output is normally tewéd. The result is that output
to STDOUTmay not appear on the useterminal right awayThe bufer is
flushed when it is full, at the end of the task, or when it is explicitly flushed.
The bufer may be flushed witlilush() , whose agument is the file
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descriptor of the strearTDOUT for example. In some cases, particularly

in deing stages of development, it may be desirable to have output appear
more quickly Rather than usinfjl ush() repeatedlyyou may set the fio
parametef_FLUSHNL to YES with a call tof set () . This advisedio to

flush the buer whenever it prints a newline charactéhus, output will
appear on every line. Output$¥ DERR always flushes on newlines.

Dynamic Memory Allocation

In order to use dynamic memory pointers propesu must declare at
least ongooi nt er variable in the appropriate procedures. This will gen-
erate the code defining a common block with declarations for all of the
Mem arrays:Mend, Menr, Mem , Mens, etc. Otherwise, you will get a
compiler error complaining of undeclared variables.

Image 1/O

Perhaps the most confusing aspect of image 1/O is the rather unintuitive
way images are written iimio. It is necessary to obtain an output pointer
using one of thé np... procedures and then filling in the values in the out-
put bufer. The pixels are not actually written to the output file until the out-
put bufer is flushed or the image is closed. This can, in fact, lead to another
pitfall. If you wish to write and read the same image in the same task, you
must be sure that the pixels are written out before trying to read them in
again. This may be assured with a callbd | ush() after filling the out-
put bufer. Alternately you might close the image usingunmap() and
then reopen it with mmap() . A brief example may clarify this situation.
The following fragment of code opens an image for read and write access,
writes some pixels and reads them back in.
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pointer im ip
I nt nx

# Map the imge
im= immp (imge, READ WRITE, O

# Get the line size
nx = IMLEN(im 1)

# Map an output buffer
ip=inpl2r (im 1)

# Fill the output buffer

cal |l amovkr (1.0, Menr[ip], nx)

# Flush the out put
call inflush (im

# Read the line back in
ip=inmgl2r (im 1)

Example C.12: Image I/O.

If you read two lines using arbitrary line 1/0 with two separatéebuf
pointers, the second call may make the first poiteinvalid.

x1
X2

imgl2r (im i)
imgl2r (im i+1)

This applies to output,npl 2T() as well as input.

Group Format

One additional wrinkle involves multi-imagegroup format STF
(STSDAS1 format) images. This format allows more than one image in a
single logical image (pair of files; header and pixel file) with a common
image headeilt is possible to access more than one image in the group
simultaneously in a task. ¥ imio, each sub-image (sometimes referred to
confusingly as @roup) you need to usenmap() separatelyTo specify
which image in the set to open, append the image number enclosed in
square brackets to the file name initlerap() call. The following opens
the second image in a multi-image group format file:

1. For more information about STSDAS, seeSR8DAS Users Guide, available
from the STSDAS Group at STScl.
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# Get the inmage nanme fromthe cl

call clgstr ("image", inmage, SZ_FNAME)
# Append the "group" nunber

call strcat ("[2]", image, SZ FNAME)
# Qpen the image

gl = immap (image, READ ONLY, 0)

Example C.13: Opening the Second Group of a Group Format STSDAS Image.

In many cases, it would be up to the user to specify the group number on
the image file name when using the task. There may be cases, however
which a task would use specific groups in an imageréate a new multi--
image file, you must specify the total number of images in the set as well as
the image numbeExampleC.14 creates a four image set and opens the
first image.

# Get the image name fromthe cl

call clgstr ("image", inmage, SZ_FNAME)

# Append the "group” nunber and nunber of images
call strcat ("[1/4]", inmage, SZ_FNAME)

# Open the imge

gl = immap (inage, READ ONLY, O0)

Example C.14: Creating a Four-Image Set and Opening the First Image.

A slight complication arises when you wish to create a multi-image
group format file and simultaneously access more than one image. In this
case, you must create the image, close it, and reopen the individual images.
Note also that the pixel file witlot be created propeunless a write opera-
tion is performed. This may be done by simply writing a single line before
closing the image.
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# Get the image name from the cl

call clgstr  (‘image’, image, SZ_FNAME)
call strcpy (image, imgl, SZ_FNAME)

# Append the "group” number and number of images
call strcat  ("[1/4]", imgl, SZ_FNAME)
# Open the new image

gl = immap (image, NEW_IMAGE, 0)
IM_NDIM(im) =2

IM_LEN(im,1) = 512

IM_LEN(im,2) = 512

# Write a dummyline to create the pixel file
junk = impl2r (image, 1)

# Close the image

call imunmap (gl)

# Reopen the individual images

call strcpy (image, imgl, SZ_FNAME)
call strcat  ("[1]", imgl, SZ_FNAME)
gl = immap (imgl, READ_WRITE, 0)

call strcpy (image, img4, SZ_FNAME)
call strcat  ("[4]", img4, SZ_FNAME)
g4 = immap (img4, READ_WRITE, 0)

Example C.15: Accessing More Than One Image in a Multi-lmage File.

Logical Flags

In addition tobool

data type variables, many SPP programs use the

macro predefined constarES andNOas flag or switch valueblote that

these are int

andfalse

constants, not bool s. Thebool

literal constants areue






Debugging

-I-he SPP preprocessac, recognizes many syntax errors. Needless to
say not all programming errors will be caught this waince SPP is pre-
processed into Fortran, it is useful to know a bit about the resulting Fortran
code in order to find programming errors. The most instructive way to
understand the code is to look at it. Use-theoption of xc to preserve the
Fortran output. Many times errors are apparent in the Fortran code without
having to use a source-level debugger at all.

|dentifier Mapping

Since the Fortran produced by xc is Fortran 66, identifier names must be
six characters or fewgwith no special characters such as underscores. SPP
however permits longer identifier names with the underscore character
The xc preprocessor maps such names by first removing underscores and
using up to the first five characters of the identifier and the last character
The xc preprocessor writes a table of the original SPP identifiers and the
mapped Fortran names at the end of the output Fortran as comments. If dif-
ferent SPP identifiers map to the same Fortran identiiassues a warn-
ing that the identifier mapping is not unique and creates a unique identifier
by replacing the last character with a digit in one case.
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Dynamic Memory

It is possible to examine the values of dynamically allocated memory
These are treated as a Fortcammmon block, with all of theMem arrays
equi val enced to a single arraylThe relevant Fortran code generated is
shown in Exampl®.1.

| ogi cal Menb(1)

integer*2 Ment(1)

integer*2 Mens(1)

integer Mem (1)

integer*4 Menl (1)

real Menr (1)

doubl e precision Mend(1)

conpl ex Memx( 1)

equi val ence (Menb, Ment, Mems, Meni, Mem, Menr, Mend, Menx)
conmmon / Meml Mend

Example D.1: Fortran Code for Handling Dynamically Allocated Memory.

VMS

The \AX/VMS debugger permits examining tidem arrays. Keep in
mind the manner in which the array was allocated, howaWer pointer is
an arbitrary dbet into virtual memoryThe elements of your array are
located relative to the pointéfhe debugger will not know the size of the
array but you can specify a range of elements to examine. Once the pointer
is dereferenced by passing to a procedure, it is treated as a normal Fortran
array However be particularly careful of arrays declared in procedures
with ARB. ARB is a macro that translates into a vergéanumberlf you
examine an array declar&&B without specifying a range of elements, the
debugger will try and list what it thinks are all of the elements of the.array
Remember to specify a range of array elements.

Unix

In the Unixdbx debuggerit is a bit more tedious to examine the con-
tents of a dynamically allocated arrayfuYneed to specify the memory
location (pointer address) and the data type to display example, if a
pointer toMent is in a variable calledi ne, then the followinglbx com-
mand will display the first element:

print (line-1)*4/f
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To look at then™ element, add to the word location:
print ((line-1)*4+10)/f

will show the 18 element. The followingibx initialization file defines
command aliases to help examine contents ofvra buffers. It may be
placed in the file dbxi ni t in the Unix root directory

alias menmd "((!':1)-1)*8/g"
alias mem "((!':

alias mens "((!:1)-1)*2/d"
alias menr "((!: "
alias menc " ((!

alias veci "&:

|
alias vecc "&: 1[' 2]/!:3 c"

Example D.2: Unix .dbxi ni t Debugging File.
The commands are used by specifying the symbol name of the memory
pointer For example if the SPP code contained:

call malloc (buf, npix, TY_REAL)
call nmyproc (Menr[buf], npix)

Then you could examine the first element of the memorfgbpbinted to
by buf with thedbx command:

menr buf

Task

The single line SPPask statement results in a verydaramount of
Fortran code. This implements a single procedure calyed r unt ask,
which is mapped to the Fortran na@®éSRUK. This is because there is a
great deal of processing dealing with selecting tasks and handling errors.
Normally, there is no need to look at the preprocessed code for the task.
When your task is compiling, you will see this procedure being compiled.
Be aware also that when you are debugging, your top-level applications
procedure is gubroutine of the task, which is, in turn, a subroutine of the
IRAF main procedure. The top level IRAF main is part of the IRAF kernel
and therefore written in C. Most debuggers will somehow make it known
that they are trying to debug C code. This is usually not important.






STSDAS

Tables

S’SDAS tabled are binary files that contain data in row and column
format. Each column has a name, data type, print format, and unit. All the
values in a given column are of the same data type, batefif columns
may have dierent data types. The column name should be unique within a
table. The print format may be used to display the values but does not
affect the way the values are stored in the table. diig s string may
contain any information that will fit; calling it “units” is just a suggestion.

A table may also contain header parameters in a format similar to FITS
header keywords.

The data types supported for tables are double precision real, single
precision real, integeboolean, and text stringsaMes are stored in the
table file in the host machirgebinary format. Elements that have not been
assigned values or that have been set to “undefined” are flagged as such in
the table.

The object library specified to xc a$t bt abl es contains all the
spp-callable table 1/O routines. The include fildbset. h defines
parameters for getting such information as the number of rows or columns
in a table. Some items may also be set. The maximum lengths of column
names and similar values are also specified in that file. Further details are
given below Thet bpset routine is used to set parameter values, and the
integer functiort bpst a returns values.

A table with more than one column is a 2-D array of values. A 2-D array
can be stored in the file in row or column ordered format. That is, as you
step from word to word in the file, you could be stepping along a row or
down a column. Both options are supported for STSDAS tables. Simple

1. The STSDAS system, including the tables package and libraries for table
manipulation and multigroup access, is available via anonymousdtso . edu.
If you need more information, contact the STSDAS Group via e-mail to:
hot seat @t sci . edu
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Procedure

text files in row and column format can also be accessed as tables by the
STSDAS table 1/O routines.

The file name for a binary table must include an extension twaithas
the default. A text table, on the other hand, need not have an extension.
STDI NandSTDOUT may be used for input and output text tables.

The table interface includes routines for accessing table files, columns,
header parameters, table parameters, and table data. The name of each
routine begins with “tb”, the next letter indicates what type of object is
involved (row column, parametgeetc.), and the last three letters specify
what is to be done (e.g., open, close, get, put). For examiplegpn
opens a table. The third letter (“t”) implies that the routine applies to a table
as a whole, and “opn” means “open”. Similatipt cl o closes a table.

For some routines the last letter indicates the data type of the input or
output bufer. For examplet begt r operates on a table element (“e”) to
get (“gt”) an element, and the output teufis of type real (“r"). The
corresponding “put” routine isbept r. Table E.1 is a list of third letters
and what they refer to:

Letter Object Examples of use

t Table file Open, close, get table name

p Table parameter Number of rows, number of columns
h Header parameter Get or put header parameter

c Column Find, create, get or put column

r Row Get or put values in a row

e Element Get or put a single value

Table E.1: Table I1/0O Procedure Naming Conventions.

Description

tp = tbtopn (tabl enane, ionode, tenplate) Initialize (and open the table if nNEW FI LE or

tbtcre (tp)

NEW COPY)

Create new table (after initializing wittbt opn)

tbtclo (tp)

Close a table

Table E.2: Procedures to Open and Close Tables.
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ExampleE.1 reads all values from one table column and prints the
values that are defined. If this were in a file catledt . x, it could be
compiled and linked by typirfg

XC -p stsdas test.x -Ilthtables.

t ask t est

include <tbset. h> # defines TBL_NROA5, SZ COLNAME, etc
procedure test()

pointer tp # pointer to table descriptor

poi nter cp # pointer to columm descriptor

char i nt abl e[ SZ_FNAME] # tabl e name

char col nane[ SZ_COLNAME] # col um nanme

real val ue # a single value froma table el enent
int nr ows # nunber of rows in table

int row # | oop index for row nunber

poi nter tbhtopn()

I nt t bpst a()

begin

call clgstr ("intable", intable, SZ_FNAME)
call clgstr ("colnane", col nane, SZ_FNAME)
tp = tbtopn (intable, READ ONLY, NULL) # open the table
call tbcfnd (tp, col name, cp, 1) # find the colum in the table
if (cp == NULL) {
call tbtclo (tp)
call error (1, "colum not found")

}
nrows = tbpsta (tp, TBL_NROAS)
do row = 1, nrows {
call tbegtr (tp, cp, row, value) # get value in current row
if (!1S_INDEF(value)) { # 1s the val ue defined?
call printf ("9%4.6g\n")
call pargr (value)

}

}
call tbtclo (tp) # close the table
end

Example E.1: Table I/O Example.

2. Notice that thep st sdas flag means that you need to have the STSDAS
external package available on your system.
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Procedure Description
t bcdef (tp, colptr, colnane, colunits, Define columns
colfnt, datatype, |endata,
nuntol s)
tbcfnd (tp, colnane, colptr, nuntols) Find a column from its name
tbci nf (col ptr, col num col nane, Get information about a column
colunits, colfm, datatype,
| endata, |enfnt)
int = tbcigi (colptr, param Get specific info about a numeric
column (e.g. name or data type)
tbcigt (colptr, param outstr, maxch) Get specific info about a string column
(e.g. name or data type)
Table E.3: Procedures Dealing with Columns.
Procedure Description
tbtcpy (innane, outnane) Copy a table

t bt del (tabl enane)

Delete a table

tbtren (ol dname, newnane)

tbtacc (tabl enane)

Rename a table

Test for the existence of a table

tbtext (innanme, outnane, maxch)

tbtnam (tp, tblname, maxch)

Append default extension (if #'not already there)

Get the name (including extension) of the table

tbtflu (tp)

Flush FIO bufer for table

Table E.4: Table File Operations.
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Reading and Writing Data

Three sets of get and put routines are provided for accessing table data.
The “tbe...” routines get or put single elements; that is, values at a specified
row and column. The “tht” routines get or put one or more elements in a
single row The “tbc...” routines get or put values in a single column over a
range of rows. The last (sixth) letter of each routine name specifies the
buffer data type: “t” for a text string, “b” for boolean, “i” for integén” for
real, and “d” for double precision. The data type of thégouafoes not need
to be the same as the data type of the table column; the table I/O routines
convert data type when the column anddrudio not match.

Thet br gt T andt bcgt T routines return a boolean array that indicates
whether the table elements gotten are undefined. A true value means the
table elementis undefined. Thet begt T routine returns the data
type-specificl NDEF value when the table element is undefined. When
writing values into a table, values may be set to undefined by calling
t br udf . If a row exists, but no value has ever been written to a particular
column in that rowthe element at that row and column will automatically
be undefined; that is, it is not necessary totdatludf . A row exists if a
value has been put into any column in that row or into a subsequent row
(larger row number).
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Procedure

Data Types Description

tbegtT (tp, colptr, rownum buffer)

tbegtt (tp, colptr, rownum buffer,
maxch)

bird Get a numeric value from the table

Get a string value from the table

tbeptT (tp, colptr, rownum buffer)

tbrgtT (tp, colptr, buffer, nullflag,
nuntol s, rownum

t bi r d Putavalueinto the table

bird Get numeric values from a row

tbrgtt (tp, colptr, buffer, nullflag,
| enstr, nuntols, rownum

tbrptT (tp, colptr, buffer, nuntols,
rownun

Get string values from a row

bird Put numeric values into a row

tbrptt (tp, colptr, buffer, lenstr,
nuntol s, rownum

tbcgtT (tp, colptr, buffer, nullflag,
firstrow, |astrow)

Put string values into a row

bird Get numeric values from a column

tbcgtt (tp, colptr, buffer, nullflag,
lenstr, firstrow, |astrow

tbeptT (tp, colptr, buffer, firstrow,
| astrow)

Get string values from a column

bird Put numeric values into a column

tbcptt (tp, colptr, buffer, lenstr,
firstrow, |astrow)

tbrudf (tp, colptr, nuntols, rownun

Put string values into a column

Set values in a row to undefined

Table E.5: Table Get and Put Procedures.

ExampleE.2 gets two values from each row of a table and copies them
to another table if neither value is undefined. A double-precisiderhaf
used so that data of any numerical type will be copied without loss of

precision.
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include <tbset.h>

define NCOLS 2 # number of columns to get

procedure test()

pointer sp # stack pointer

pointer intable, outtable # scratch for table names

pointer ira, idec # scratch for arrays of input values

pointer ora, odec # scratch for arrays of output values
pointer ra_flag # scratch for array of null flags

pointer dec_flag # scratch for array of null flags

char cname[SZ_COLNAME,NCOLS] # column names

pointer itp, otp # pointers to table descriptors

pointer icp[NCOLS] # pointers to column descriptors in input
pointer ocp[NCOLS] # pointers to column descriptors in output
int  inrows, onrows # number of rows in input, output tables
int irow # loop index for row number in input table

int  orow # row number in output table

int i # loop index

bool nullflag[NCOLS] # null flags for getting info from a row
bool bad # true if any element of nullflag is true
double value[NCOLS] # values gotten from a table

pointer thtopn()

int  tbpsta()

begin
# Allocate scratch space for table names. We’'ll allocate space
# for column values later, after we know the size of the table.
call smark (sp)
call salloc (intable, SZ_FNAME, TY_CHAR)
call salloc (outtable, SZ_FNAME, TY_CHAR)

# Get table names.
call clgstr ("intable", Memc[intable], SZ_FNAME)
call clgstr ("outtable", Memc[outtable], SZ_FNAME)

# Get column names.
call clgstr ("ra_col", cname[1,1], SZ_COLNAME)
call clgstr ("dec_col", cname[1,2], SZ_COLNAME)

# Open input table.
itp = thtopn (Memc[intable], READ_ONLY, NULL)

# Find columns in input table. Check if they were found.
call tbcfnd (itp, cname, icp, NCOLS)
if (icp[1] == NULL || icp[2] == NULL) {

call tbtclo (itp)

call error (1, "column not found")

(Continued...)

Example E.2: Copying Columns.
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# Create an output table with the same columns as the input table.
otp = tbtopn (Memc[outtable], NEW_COPY, itp)
call thtcre (otp)

# Copy header parameters from input to output.
call tbhcal (itp, otp)

# Find columns in output table. They will be there since they were
#in the input table.
call tbcfnd (otp, cname, ocp, NCOLS)

# There will be fewer rows in the output table if the columns
# we're interested in contain undefined elements.
inrows = tbpsta (itp, TBL_NROWS)

# Here are three different ways of copying the values.
# 1. Copy element by element.
orow =0
do irow = 1, inrows {
call tbegtd (itp, icp[1], irow, value[1])
call tbegtd (itp, icp[2], irow, value[2])
if ('IS_INDEFD(value[1]) && !IS_INDEFD(value[2])) {
orow = orow + 1
call theptd (otp, ocp[1], orow, value[1])
call theptd (otp, ocp|2], orow, value[2])

}
}
# 2. Use the get-row and put-row routines. This will copy
# any number of columns, one row at a time.
orow =0
do irow = 1, inrows {
call tbrgtd (itp, icp, value, nullflag, NCOLS, irow)
bad = false
doi=1, NCOLS
if (nullflag[i])
bad = true
if (bad) {
orow = orow + 1
call tbrptd (otp, ocp, value, NCOLS, orow)

3 (Continued...)

Example 5.2 (Continued): Copying Columns.
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end

Use the get-colum and put-colum routines.

# 3.

call salloc
call salloc
call salloc
call salloc
call salloc
call salloc
call tbcgtd
call tbcgtd
# Note that
orow = -1

do irow = 0,
("'Memb[ra_flag+irow] && ! Menb[dec_flag+irow) ({
orow = orow + 1

Mermd[ or a+orow] = Mend[ira+irow]

Mermd[ odec+orow] = Mend[i dec+irow

# Done.

call
cal l
call

if

Three tines, even.
tbtclo (itp)

tbtclo (otp)

sfree (sp)

(ira, inrows, TY_DOUBLE)

(idec, inrows, TY_DOUBLE)

(ra_flag, inrows, TY_BOQOL)

(dec_flag, inrows, TY_BOQO.)

(ora, inrows, TY_DOUBLE) # possibly nore than we need
(odec, inrows, TY_DOUBLE)

(itp, icp[1l], Mend[ira], Menb[ra_flag], 1, inrows)

(itp, icp[2], Mend[idec], Menb[dec_flag], 1, inrows)

irow and orow are zero indexed in this | oop.

inrows-1 {

1 # nunber of rows in output table

+

{

d (otp, ocp[l], Mend[ora], 1, onrows)
d (otp, ocp[2], Mend[odec], 1, onrows)

Example 5.2 (Continued): Copying Columns.

Header Parameters

Tables may contain header parameters consisting of a keyword name,
data type flag, and a value. These are stored in the table as text strings.
These parameters amet used for information such as the number of rows
or columns, and the table 1/0O routines do not use header parameters when
getting or putting table elements. The same data types are supported for
header parameters as for table data, and type conversion is performed,
except that a value stored as a text string may only be gotten as text, not as
numeric or boolean. The distinction betwesglding andputting values is
the same as for image header keywordsu ¥an callt bhpt T to put a
header parameter only if that parameter already exists in the table, but you
can callt bhadT to either add a new header parameter or replace an
existing one. In contrast to than o interface, when you open a table
NEW COPY, the header parameters are not copied.
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Procedure Data Types Description
value = tbhgtT (tp, paran) bdir Get a numeric header parameter
tbhgtt (tp, param text, naxch) Get a string header parameter
t bhadT (tp, param val ue) t bdi r Addanew header parameter or
replace existing one
tbhpt T (tp, param val ue) t bi r d Replace an existing header
parameter
tbhcal (itp, otp) Copy all header parameters
t bhgnp (tp, parnum keyword, Get Nth header parameter as a
dtype, str) string

Table E.6: Header Parameter Procedures.

The t bset. h Include File

This section describes the include fileset . h. In most situations the
only parameters that will be needed &fe COLNANME andTBL_ NROWS.

These three are used for declaring the sizeshatr variables for
column names, units, and print formats.

e SZ COLNAME - Maximum length of a column name
 SZ COLUNI TS - Maximum length of string for units
* SZ_COLFM - Maximum length for print format
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The next four parameters may be read bpst a but may not be set:

Parameter Meaning
TBL_NRONS Number of rows written to
TBL_NCOLS Number of columns defined

TBL_ROALEN USED  Amount of row length used (unit
= size of single precision)

TBL_NPAR Number of user parameters

Table E.7: Non-settable Parameters Read by t bpst a.

These may be set bybpset or read byt bpsta. Parameters
TBL_ROALEN andTBL_I NCR_ROALEN are relevant only to row-ordered
tables, whileTBL_ALLROAS and TBL_I NCR_ALLROWS are relevant
only to column-ordered tableSBL_ROALEN is for setting the row length
to a specific value. In contra§tBL_| NCR_ROALEN is used to increase
the row length by the specified amount over its current value, whatever that
may be. The latter is more useful. When creating a new table, we suggest
the following procedure for a row-ordered table. After callifg opn,
define columns usingbcdef . Then the row length will be didient for
the columns that have been defined. If you will need to define more
columns after the table has been created, you cant balkket with
TBL_I NCL_ROWEN to preallocate the needed space before creating the
table with t bt cre. The numerical value would be one for each
single-precision or integer column, and two for each double-precision
column. For character strings, divide the maximum string length by the
number of bytes in a single-precision variable and round up.
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Parameter Meaning

TBL_ROWLEN Row length to allocate (units are the size of a
single-precision)

TBL_I NCR_ROALEN Increase row length (in single-precision units)

TBL_ALLRONS Number of rows to allocate
TBL_I NCR_ALLROAS Increase number of allocated rows

TBL_WHTYPE Type of table? (see below)
TBL_MAXPAR Maximum number of user parameters
TBL_MAXCOLS Maximum number of columns

Table E.8: Table Parameters That Can be Read or Set.

The table type as set or read usifigl._WHTYPE is defined byt the
parameters indble E.9.

Parameter Meaning

TBL_TYPE_S ROW Row-ordered binary table
TBL_TYPE_S COL Column-ordered binary table
TBL_TYPE_TEXT Text file

Table E.9: Table Types.

The parameters described iable E.10 have to do with the file size and
file 1/0O buffer size.

Parameter Meaning

TBL_ADVI CE SetRANDOMor SEQUENTI AL
TBL_BUFSI ZE Get bufer size in characters
TBL_DATA Sl ZE Get size of table data in characters

Table E.10: Table Size and File 1/0O Buffer Size.
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The parameters are for getting information about a column using
t bci gt ort bci gi .

Parameter Meaning

TBL_COL_NAME Column name

TBL_CCOL_UNI TS Units for column

TBL_CCL_FMT Print format for displaying values

TBL_COL_DATATYPE Data type { n for character string)

TBL_CCOL_NUMBER Column number
TBL_COL_FMILEN Length for printing using print format
TBL_COL_LENDATA Number of elements if colum is an array

Table E.11: Getting Column Information.

Procedure Description

tbpset (tp, setwhat, val ue) Set a table parameter

int = tbpsta (tp, param Get the value of a table parameter (e.g.
number of rows)
int = tbcigi (colptr, param Get information about column (integer)
tbcigt (colptr, param Get information about column (string)

out str maxch)

Table E.12: Table Parameter Procedures.

Print Formats

The print format is used by such taskstagnt, tedit, andtread to
determine how the column values are to be displayed. The earlier statement
that the print format does notfeft the way the values are stored in the
table is really only true for binary tables. For output (or read-write) text
tables the print format is actually used to write the file, so it is critical with
regard to the precision of the data values. Most of the ordinary Fortran
formats are supported for tables. SPP formats are discussed imt the
section of this document. The only SPP print formats that are not allowed
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are those that are simply irrelevant, suct aa; andz. The field width
may not be zero, howevérhe procedurebbf t p may be used to convert
a usersupplied Fortran style format to an SPP style format.

Table E.13 is a list of the default print format for each data type, given
in both SPP style and Fortran style.

Data type SPP Fortran

r eal %5. 79 Gl5.7
doubl e prec 925.16g &25.16

i nt eger %1d 11
bool ean %6b L6
text string 9%ns A-n

Table E.13: Default Print Formats.

For character strings “n” is the string size as given when the column was
defined. The minus sign means that the string will be left justified. While a
format such as “A-12" is not available in standard Fortrant thief t p
routine will convert it to “%-12s".

SPP formats and Fortran equivalents that are supported for tables are
listed in this table. The syntax #w. dC (SPP style) oCw. d (Fortran
style), wherew is the field widthd is the number of decimal places (or
precision forg format), andCis the format code as given in the left column
below When giving a format in Fortran style, use the format code given in
the second column; these are shown in upper case but may also be given in
lower case. Note thaH and M are not standard Fortran formats; in
particular His not interpreted as Hollerith.
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SPP Fortran Meaning

b L Boolean “yes” or “no”

d I Integer displayed in decimal

X Z Integer displayed in hexadecimal
e E or D Exponential format

f F Floating point

g G Use F or E as appropriate

h H HH:MM:SS.d (sexagesimal)

m M HH:MM.d (sexagesimal)

S A Character string

Table E.14: Table Print Formats.

Table Utilities

TableE.15 lists some table utility procedures. These permit operating on
entire columns or rows and performing other funtions on the table as a
whole.

Note also that thébtables package of tasks in the STSDAS external
package that allows flexible and sophisticated manipulation of existing
tables without writing any code. These include such database-related
functions as extracting selected rows based on the value of particular fields,
extracting given columns by name, printing a report from a table or editing
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atable in-place. See hel p t bt abl es for alist of the tasks and a brief

description of each.

Procedure

Description

tbtchs (tp, maxpar, maxcols, row en,
al | rows)

tbrcpy (itp, otp, irownum orownum

Change allocated space of any/all portions of atable

Copy an entire row (only for tables with identical
columns)

tbrcsc (itp, otp, icptr, ocptr,
i rownum orownum ncol s)

tbrswp (tp, rowl, row2)

Copy arow, but copy only selected columns

Swap two rows

tbtsrt (tp, nuntols, colptr, fold,
ni ndex, index)

tbrdel (tp, firstrow, |astrow)

Sort an index for the table rows

Delete arange of rows

tbrnll (tp, firstrow, |astrow)

tbcnam (tp, col ptr, col nane)

Set al columnsin arange of rowsto INDEF

Change the name of a column

tbefm (tp, colptr, colfnt)

tbcnit (tp, colptr, colunits)

Change the format for printing a column

Change the units for a column

colptr = tbcnum (tp, col num

Get the column pointer from the column number

Table E.15: Table Utility Procedures.
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Glossary

-I-he following terms and acronyms are used in, SeBitional terms,
generic to IRAF and STSDAS, are defined in the glossary iSTESOAS
Users Guide.

access mode - How to open a file or image, read-gntgad-write, for
example.

argument - A value passed to a procedure. Also in the cl, a value passed to
a task.

assignment - Replace the value of a variable.

asynchronous error - An error that results in control passing to a proce-
dure other than the one in which the error occured.

boolean - A binary value, yes or no, true or false.
cell array - Grey scale image, sometimes also known as a raster or pixmap.

clio - Interaction with the cl. The VOS library of procedures for accessing
cl parameters.

coercion - (As intype coercion.) Conversion of a value from one data type
into anotherCommonly by simple assignment of variables.

comment - Text in a program file that is not executed and is retained for
information purposes. In SPEbmments begin with the # character

common blocks - A set of ariables available to more than one procedure
through common memary

compile - To process source code inmbject code, combined with other
procedures to make a program (see “link”).

constant - An identifier having a fixed value.

data structure - The oganization of data in a commonly accessible form.
Often includes multiple data types and arrays.

data type - The basic attribute of a variable, constant or data value such as
integer floating point (real), double precision, boolean or complex.

dimensionality - The number and sizes of axes of an array
double precision - A floating point value having more bits for the mantissa.
error - An abnormal condition in a program

237
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error handler - A procedure called on an error condition to perform some
activity such as closing files and cleaning up memory

escape sequence Characters including metacharacters that change the
interpretation of other characters. The backslash (“\”) is an escape
to permit specifying a character constant in.SPP

file descriptor- A pointer to a structure describing a file.

file name template A file name possibly referring to more than one file,
including wild-cards or a list of individual file names, or a pointer
to a file containing a list of files.

filter - A program that transforms a data set in some way without altering
the fundamental structure of the data.

fio - Basic binary file 1/0 not limited to images or any particular structure.
flag - A variable indicating one of a set of possible conditions.
floating point- A value having a decimal and fractional part.

fmtio - Formatted 1/O. The procedures for standard text and numeric 1/0 to
files and terminals.

function - A procedure returning a value assigned to a variable.

gcur - Graphics cursoiTreated by the cl as a cl parameter and accessed in
SPP via a clio procedure returning the coordinates of the cursor

generic operator A function or operator that can be used for any of sev-
eral data types.

generic preprocessor The program that converts generic source into com-
pilable code specific to a given data type.

gio - Graphics I/0. The set of VOS procedures for drawing graphs.
graphcap- The file that describes attributes of graphics devices.

header parameter A value stored as part of an image file, used to describe
the image.

heap memory Dynamically allocated memory accessed withrnthel oc
family of procedures.

identifier - A string or sequence of characters having a recognized meaning
such as a variable or procedure name.

image section (see “section.”)

imcur - Image cursorA cl parameter type returning coordinates from an
image display

imio - Image 1/O. The library of procedures for accessing IRAF images.

include file - Source code that can be inserted as-is into other source by
referring to a file name.



239

index - An integer constant or variable indicating a particular element of an
array

integer - A constant or variable having no fractional part.

intrinsic function - A function built in to the language. In general, the data
type of the aguments and returned value may be any valid data
type.

kernel - The low-level routines implementing the system. The system pro-
cedures dealing with a particular image format. The “device driv-
ers” for rendering graphics on a class of devices.

keyword - An identifier or character string reserved for some purpose such
as image header parameters.

learning - The capability of the IRAF cl to remember the value of a task
parameter from execution to execution.

library - A file containing compiled procedures (object code) and linked
with an application.

link - Combine compiled code to make an executable program.

logical task - An IRAF task implemented as part of a package or physical
task.

longword boundary - Locations in data memory separating the longest
addressable units of data.

macro - A string identified with a symbol and replaced by string substitu-
tion in code.

mask - An image whose values indicate particular properties of another
image or matching size. A mask might specify bad detector element
or relative errors of pixels.

matrix - A grouping of values in a rectangular array

memio - The VOS library of procedures for dynamically allocating mem-
ory.

metacharacters - Literal characters interpreted by a parser

mii - Machine Independent I/0O. A method of converting data that is inde-
pendent of the host computer architecture. The library of proce-
dures to perform these conversions.

mixed mode - An expression involving variables or constants diedgnt
data types.

mkpkg - The program that combines compiling, linking and maintaining
source and objects.

mode - Manner in which CL handles prompting and learning when dealing
with parameters.
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mtio - Magnetic tape 1/O.
mwcs- Mini World Coordinate System.

NDC - Normalized Device Coordinates. A graphics coordinate system rel-
ative to the device.

newline- A character interpreted as a delimiter between lines of text.

OIF - Old IRAF format. The native IRAF image format consisting of a pair
of binary files, a header describing the image and a separate pixel
file.

operators- Functions combining values in an expression sueh as&&.
osb- Bit and byte operations.

package- A library of procedures grouped by common function or a group
of application tasks grouped by common function.

parameters The aguments to a program accessed via clio from the cl.

pen- The logical position of drawing graphics.

physical task An executable IRAF program, possibly comprising multiple
“logical tasks.”

plio - Pixel list 1/O.

pointer - Reference to dynamically allocated memory addresses.

predefined constant A program value defined at compile time, either in a
dat a statement or as a symbolic macro.

preprocessor An operation applied to program source before compilation.
The generic preprocessor permits defining common code for multi-
ple data types. xc is the preprocessor for converting SPP into For-
tran.

primitives - Relatively low-level procedures performing well-defined func-
tions.

procedure- The smallest executable unit of a program, called by another
procedure or as a task from the cl.

prompt - A request for input from the user via a prompt to the terminal
(window).

pset- A file containing cl parameters. A pset must be defined as a task in
the cl and assigned to another task parameber parameter values
are then available to an application as any cl parameter

pushback- The opposite of reading from an input stream or file. Data
pushed back is then available for reading.

QPOE- Quick Position-Oriented Event image; the native image format for
thexray analysis package developed by PROS.

Ratfor - Rational Fortran. One of the steps in converting SPP into Fortran.
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scalar - A single-valued variable.

section - (As in “image section.”) A portion of an IRAF image treated in an
application as any image.

stack memory - Dynmically allocated memory

STF - STSDAS format images also known as GEIS format. The native
image format for HST observations. STF images ageharinter-
changeable with OIF images.

stream - A source of data logically consisting of a string of characters. The
standard input (STDIN), standard output (STDOUT) and standard
graphics (STDGRAPH) are the most commonly used streams.

string - Sequence of characters enclosed in quotes, for exdiaipdg, .
structure - See “data structure.”

symbolic constant - A numeric value or literal string represented by an
identifier In compiled code, the value replaces the identifier by
simple string substitution.

task - A program known to IRAFa command in the cl.

templates - See “file name templates.”

termcap - The IRAF file that describes attributes of text terminals.

token - The smallest sequence of characters recognized by a, anseen-
ber or identifierfor example.

tty - Terminal 1/O.

unary operator - An operator requiring only one operand, such as nega-
tion.

vector - An array a contiguous group of values accessed through a com-
mon variable name.

vops - Vector operators. The library of procedures that operate on arrays,
potentially optimized for the host architecture.

VOS - Virtual operating system. The set of procedures called by an applica-
tions tasks for performing IRAF functions.

WCS - World Coordinate System. Coordinates associated with data rather
than a device or an arbitrary scale.

white space - Any number of tabs, spaces or newline characters separating
entities in a string.

word - The fundamental unit of accessing data in a program, usually sev-
eral bytes long. The word size varies between host architectures.

xc - The program that compiles and links SP&tran, and C code to pro-
duce an executable, or physical task.






Symbols

£ 4,26

"6

#3

% 7,125206 209
, 4,12

@ 35

{} 2435

'5

A

access mode6
actual
agument35
align 20
allocation
memory 53
ARB 12
argument31, 35
actual 35
procedure34, 205
arithmetic
error 156
operator32 104
array 9,11 12 53 207
index 12
operatorl03
parameteib0
ASCII 5
assignmentl5
assignment statemeB4

B

backslasihb
begin 16,34, 35
binary operatoi32

Index 243

Index

bitfield 137

bool 10

booleanl10
operator32, 105

braces35

brackets68

break 25, 26,29

byte 123
swappingl126 185

C

call 35
casez26
char9
characters, 9,88 123 188
character se?
character strin@07
cl 45,192
command52
parameterg
clio 45
cluster68
code
format 79
coercion
type 33,38
comma4
command
cl 52
comment3, 40
commonl14, 19
common blockl14
comparison
characterl24
logical 106
string 90



244 Index

compile 163
complex4,10
operatorl109
compound statemer24
conditional 24
constant
characterb
floating point4
integer3
mathematicall86
predefinedl75
string 6
symbolic 16,17, 156
continuation3
control 24
conversion
byte 123
characterl23
pointer 183
coordinatesl 29
cursorll9
graphics51

D

datal5
data structurel 6,18 58 183
data type8, 33
booleanl10
character®
codel77
coercion33 38
floating point10
in table 219
integer9
parameterl71
pointer 8,11
string 9
debugging215
decimal 3
declarationl1
default 26
definel16,31
descriptor63
dimensionl2 61
do 29
double4, 10

double quote$
dummy 35
dynamic memonb3 210 216

E

else25
end 34 35
entry 36
environment variabld.42
EOF 65
EOS9 88114125
errchk 149
error 147
error handlerl53
escape206
characterl69 209
escape sequencés
evaluating expressiofil
expressior5, 31
evaluation91
mixed mode33
extension62
extern8, 14
external functionl4

F
file
I/O 95,179
include 39
parameted?7, 171
type 179
filter 194
fio 95
FITS 69
floating point4, 10
fmtio 78
for 28
format 78
internal 85
table 231
format code79
formatted
/O 78
input 83
formatted 1/0209



Fortranl,4,7,9,38 53 78 81, 89,
125163166 191 206 215

216217
function 13,30, 34,35
externall3
inline 23
intrinsic 33 36
statementl6

G

generic preprocessadrl, 167

gio 114 198

goto 30

graphics114
cursor119
interactive200

H

handler
error 153
header
image 69
heap54
help 40
hexadecimaB
host architecturd 84

I/O 175

file 95,179

binary 98

text 100
formatted78,209
image 60,179 196 210

line 63

section66

line by line 65
mode 180
pixel list 127
stream95
table 219
terminal 119

identifier 2, 3,6
mapping215

if 25

iferr 148

Index

image 127,194
coordinatesl 29
header69
I/0 60,179196 210

line by line 65
section66
line 65
line /10 63

name
template75
open6l
parametei69
section68, 74
template62
imio 60, 196
include 39,43 190
include file 39
INDEF 181
indefinite 181
indentation25
index
array 12
initialization 15
inline functions23
input
formatted83
integer9
decimal 3
internal format85
intrinsic function33, 36

L

label
statemenB0
languagel75
lexical form 7
library 43 163
line by line 1/065
link 43 163
list structured parametei8
logical 10
comparisonl06
operator32
logical tasks161
long 9
looping 27

245



246 Index

M
machinel84
macrol13 16,31, 58 175
malloc 54
manual paged0
mapping
identifier 215
mask 127
mathematical constarit86
matrix 138
memio 53
memory 63
allocation53
dynamic53 210 216
heap54
stack57
mii 126
mixed mode33
mkpkg 163 204
mode
accesV6
/0 180
parameterl72
mwcs 129

N

newline 1, 81
next 25, 29
null statemen®8

O

octal 3

open95s
image61

operator
arithmetic32 104
binary 32
boolean32
logical 32
precedenc&1
unary 32

osb 123

output 78
buffered 209

P

pack 123 124
package43 44,163 173
par 47,50 171174
parameted5
array 50
cl 45192
cursor51
file 47,171
image 69
list structured48
pset48
set 172
standard72
vector 50
parenthesed, 16,31
pattern matchings
percent7, 209
physical taskl61
pixel list 127
plio 127
plotting 114
pointer 8,11, 20,22 63 183
precedence
data type33
operator31
preprocessoxiii, 1
generic4l 167
printf 78
procedure34
agument34, 35,205
processl44
program38
pset48 172
pushbackl00

Q

quote
single 5

quotes
double6

R

Ratfor 1,163 166
real 4,10



repeat28
reserved identifie
return 30,35

S

salloc57
scalarll
scan83
section
image 66,68 74
sexagesimatt
short9
single quotes
smark57
space
white 2
stack memorys7
standard parametéR
statemeng, 24, 35
assignmenB4
compound24
Fortran7
function 16
label 30
null 24,28
stream
/O 95
string 9, 15,207
character88,207
comparison90
constant 6
pack 123
substitution 16
structurel6, 18 58, 64, 183
STSDAS table219
switch 26

symbolic constani3 15,16, 17,

61,156 175
syntaxxiii

T
table

STSDAS219
task40 52 161, 217
template62

Index

file namel01
image name/5
terminal 1/0119
time 143
tty 119
type coercion33 38 53 92

U

unary operatoB2
unpackl123 124
until 28
updatel63

user are&®9

Vv

variable
array 12
environmentl42
scalarll

vector
operatorl03
parametels0

vops 103

W

while 27

white space?, 25,84, 86
wild card 75

word 84

world coordinatesl 29

X
xc 1,166

247






