
SPP Reference Manual
STSDAS Group
Science Software Branch
Zoltan G. Levay, Editor

Second Edition
October 1992

SPACE
TELESCOPE
SCIENCE
INSTITUTE

Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration

The STSDAS Group
Bob Hanisch

Betty Stobie
Dick Shaw
Ray Williamson
Dave Bazell
Jonathan Eisenhamer
Phil Hodge
J.C. Hsu
Zolt Levay
Bernie Simon
Nelson Zarate
Mark Stevens
Fred Romelfanger
Jinger Mo

Chief, Science Software Branch

STSDAS Programming Supervisor
STSDAS Project Scientist
System Administrator and Distribution
Synthetic Photometry, FOC Calibration and Analysis
Graphics, Image Display, WCS Support
Table System, Fourier Analysis, FOC Calibration and Analysis
HSP, FGS, and WF/PC Calibration and Analysis
Graphics, Image Display, Filmwriter, Documentation
Calibration Data Base, Table Editor, IRAF System Support
FITS, IRAF System Support, Ports, Benchmarking
Technical Writing
X-Windows-Based User Interface
Software Testing, Image Restoration

This document was prepared by the Space Telescope Science Institute under U.S.
Government contract NAS5-26555. Users shall not, without prior written
permission of the U.S. Government, establish a claim to statutory copyright. The
Government and others acting on its behalf, shall have a royalty-free, non-
exclusive, irrevocable, worldwide license for Government purposes to publish,
distribute, translate, copy, and exhibit such material.

Send comments or corrections to:
Zoltan G. Levay, SCARS
Space Telescope Science Institute
3700 San Martin Drive
Baltimore, Maryland 21218

E-mail: levay@stsci.edu

Contents i

Table of Contents

List of Selected Tables .. ix

List of Selected Examplesxi

Preface ... xiii

Chapter 1: Language Syntax................................ 1

Lexical Form ... 1
Character set .. 2
White Space ... 2
Comments .. 3
Continuation.. 3
Constants.. 3
Fortran statements.. 7

Data Types.. 8
Integer... 9
Character .. 9
String .. 9
Floating point .. 10
Boolean... 10
Pointer .. 11

Declarations.. 11
Scalar Variables.. 11
Arrays ... 12
Functions .. 13
External Functions.. 14
Common ... 14

Initialization ... 15
The data Statement .. 15
The string Statement .. 15

Macro Definitions... 16
Symbolic Constants .. 17
Data Structures... 18

ii Contents

Macro Functions ... 23
Control Flow.. 24

if...else .. 25
switch...case.. 26
while ... 27
repeat...until.. 28
for ... 28
do ... 29
break ... 29
next ... 29
return... 30
goto ... 30

Expressions .. 31
Operators.. 32
Mixed Mode Expressions.. 33
Type Coercion .. 33
The Assignment Statement .. 34

Procedures.. 34
begin...end .. 35
{...} ... 35
Arguments .. 35
entry Statement.. 36
Intrinsic Functions... 36
Calling Fortran Subprograms.. 38

Program Structure ... 38
Include Files.. 39
Help Text .. 40
The task Statement .. 40

Generic Preprocessor .. 41

Chapter 2: Libraries and Packages:
The VOS Interface .. 43

Interaction with the cl — clio ... 45
Ordinary Parameters .. 45
pset parameters.. 48
List Structured Parameters ... 48
Vector Parameters.. 50

Contents iii

Interactive Graphics Cursor .. 51
cl Command.. 52

Memory Allocation — memio ... 53
malloc and relatives ... 54
smark and salloc .. 57
Data Structures... 58

Accessing Images — imio ... 60
Open... 61
Arbitrary Line I/O... 63
Line by Line I/O... 65
General Sections .. 66
Miscellaneous Procedures.. 68
Header Parameters .. 69
Standard Fields... 72
Image Sections... 74
Image Name Templates ... 75

Formatted I/O — fmtio.. 78
printf and its relatives... 78
Format Codes... 79
Additional Output Procedures... 82
Formatted Input — scan, et. al. ... 83
Internal Formatting.. 85
Character and String Functions.. 88
Evaluating Expressions — evexpr.................................... 91

File I/O — fio... 95
Binary File I/O... 98
Text Character I/O .. 100
Pushback.. 100
Filename Templates ... 101

Vector (Array) Operators — vops.................................. 103
Arithmetic Operators... 104
Bitwise Boolean operators .. 105
Logical Comparison.. 106
Fundamental Array Operators .. 106
Algebraic Operators.. 108
Complex Operators... 109
Fourier Transforms ... 110
Transformations.. 111
Miscellaneous Procedures.. 112

iv Contents

Scalar Results... 113
Vector Graphics — gio ... 114

High-Level Plotting Procedures .. 114
Setup .. 115
Graphics Parameters.. 116
Scaling.. 117
Drawing... 117
Cursor Interaction ... 119

Terminal I/O — tty ... 119
Open and Close.. 121
Low Level Database Access, TTY Control 121
High-Level Control .. 122

Bit & Byte Operations — osb.. 123
Byte and Character Conversions...................................... 123
Character Comparisons.. 124
Pack and Unpack Characters ... 124
Fortran Strings.. 125
Machine Independent I/O — mii 126

Pixel Lists — plio ... 127

World Coordinates — mwcs ... 129
Coordinate Systems ... 130
Axis Mapping .. 132
Object Creation and Storage .. 133
Coordinate Transformation Procedures............................ 134
Coordinate System Specification...................................... 135
mwcs Parameters ... 137
Matrix Routines... 138
Examples.. 138

Miscellaneous — etc .. 142
cl Environment Variables .. 142
Time and Timing... 143
Process Information.. 144
Convert Flags ... 145
Miscellaneous Functions .. 145

Contents v

Chapter 3: Error Handling................................... 147

iferr... 148

errchk .. 149

Additional Error Handling Procedures 151

Error Handlers .. 153

Chapter 4: Making a Task 161

Program Structure ... 161
The task Statement .. 161

Compiling and Linking .. 163
mkpkg ... 163
xc ... 166
Generic Preprocessor... 167
Parameter Files .. 171

Package Structure... 173
Tasks in the Package ... 174
Implementation ... 174

Appendix A: Predefined Constants 175

Language Definitions.. 175
Generic Constants .. 176
Data Type Sizes ... 177
Data Type Codes.. 177
File and Image I/O .. 179
Indefinites ... 181
Pointer Conversion ... 183

Machine Parameters .. 184
Extreme Numbers... 185
Byte Swapping.. 185

Mathematical Constants .. 186

Character and String-Related Definitions.................... 188
Character Types ... 188

Token Definitions... 189

VOS Library Includes ... 190

vi Contents

Appendix B: Examples .. 191

"Hello World" .. 191

cl Interaction ... 192

A Simple Filter .. 194

Image I/O... 196

Basic Graphics ... 198

Interactive Graphics.. 200

Task .. 203
mkpkg ... 204

Appendix C: Tips and Pitfalls 205

Procedure Arguments .. 205

Calling Fortran.. 206

Character Strings .. 207
Arrays of Strings ... 207
Characters vs. Strings .. 208

Formatted I/O ... 209
The % Character.. 209
Buffered Output .. 209

Dynamic Memory Allocation ... 210

Image I/O... 210
Group Format ... 211

Logical Flags .. 213

Appendix D: Debugging 215

Identifier Mapping.. 215

Dynamic Memory .. 216
VMS.. 216
Unix... 216

Task .. 217

Contents vii

Appendix E: STSDAS Tables 219

Reading and Writing Data ... 223

Header Parameters .. 227

The tbset.h Include File .. 228

Print Formats .. 231

Table Utilities .. 233

Bibliography.. 235

Glossary ... 237

Index .. 243

viii Contents

Tables ix

Table 1.1: SPP Character Set. ... 2
Table 1.5: Character Constant Escape Sequences........................... 5
Table 1.6: Data Types... 8
Table 1.8: Arithmetic and Boolean Operators. 32
Table 1.9: Data Type Precedence. .. 33
Table 1.10: Intrinsic Functions.. 37
Table 2.1: Parameter I/O Functions. ... 46
Table 2.5: Heap Memory Allocation Procedures. 54
Table 2.7: Stack Memory Procedures... 57
Table 2.8: Image I/O Functions. .. 61
Table 2.9: Access Mode Parameters. ... 62
Table 2.11: Image Line I/O Functions. .. 63
Table 2.12: Line by Line I/O. .. 65
Table 2.13: Image Section Memory I/O Functions............................. 67
Table 2.15: Image Header Parameter Functions. 70
Table 2.17: Standard Header Keywords... 73
Table 2.18: Image Section Syntax... 75
Table 2.20: Formatted Output Functions. .. 78
Table 2.21: Output Format Codes... 80
Table 2.23: Escape Sequences. .. 81
Table 2.24: Formatted Input Functions. ... 83
Table 2.25: Input Functions... 84
Table 2.26: Internal Formatting Functions... 86
Table 2.27: Conversion Functions.. 87
Table 2.29: Basic String Functions... 88
Table 2.33: Pattern Matching Metacharacters. 91
Table 2.37: File I/O Functions.. 95
Table 2.42: Binary File I/O Functions. .. 98
Table 2.43: Text Character I/O Operations....................................... 100
Table 2.51: Fundamental Array Operators....................................... 107
Table 2.58: Graph Drawing Functions.. 114
Table 2.71: Character Comparison Functions................................. 124
Table 2.86: Reading Environment Variables.................................... 142
Table 4.2: cl Parameter Data Types. ... 171
Table A.1: Generic Constants.. 176
Table E.2: Procedures to Open and Close Tables......................... 220

List of Selected Tables

x Tables

Examples xi

 Example 1.2: Declaring Arrays and Using as Arguments to
Functions. .. 13

 Example 1.5: Using Symbolic Constants.. 17
 Example 1.6: Using Data Structures.. 18
 Example 1.10: Allocating and Using Structures by Pointer. 22
 Example 1.11: Defining Arrays in a Structure with Dynamically

Allocated Memory. .. 23
 Example 1.13: Using Macro Functions.. 24
 Example 1.14: Using if..else. .. 26
 Example 1.15: Using switch and case. ... 27
 Example 1.16: Using for. ... 28
 Example 1.17: Using do. ... 29
 Example 1.21: Assignment Expressions. ... 34
 Example 1.23: Program Structure.. 39
 Example 1.24 Using Include Files... 39
 Example 1.25: The task statement. .. 41
 Example 2.1: Reading Parameters From the cl. 47
 Example 2.4: Allocating and Using a Memory Block. 56
 Example 2.5: Using Stack Memory. ... 57
 Example 2.7: Using the Memory Structure. 58
 Example 2.12: Copying Images Using Arbitrary line I/O. 64
 Example 2.13: Line by Line Image I/O. .. 66
 Example 2.15: Handling Image Header Parameters........................... 71
 Example 2.17: Handling Image Name Templates. 76
 Example 2.19: Writing an Arbitrary Text File. 82
 Example 2.21: Formatting Output. ... 85
 Example 2.27: Opening Graphics. ... 116
 Example 3.3: Two Ways to Use the iferr Block. 149
 Example 3.6: An Error Handling Procedure.................................... 155
 Example 4.1: Making an IRAF Task. .. 162
 Example 4.2: Parameter Prompting... 163
 Example 4.3: MKPKG File for Maintaining Small Library. 165
 Example 4.4: Generic Operator.. 169
 Example A.2: Opening Files.. 181
 Example A.3: Executing Code with INDEF Values.......................... 183
 Example E.1: Table I/O Example. ... 221

List of Selected Examples

xii Examples

 xiii

C H A P T E R 1 :

Preface

The Subset Preprocessor Language (SPP) is a programming language
designed to develop applications in the IRAF programming environment.
This is a reference manual intended to explain the language sufficiently to
allow a programmer to develop useful applications. As such, it comprises
two fundamental parts. The first is a detailed reference describing the lan-
guage’s features, syntax, and structure. The other is a fairly complete
description of the interfaces to the IRAF environment. Separate chapters
are devoted to error handling and making IRAF tasks. Four appendixes
cover the system defined include files, detailed examples and other helpful
hints, and utilities for debugging applications code. Appendix E describest
the STSDAStables utilities. Simple examples of specific concepts are
scattered throughout this text. These are usually fragments of code
intended to illustrate the concept under discussion. However, Appendix B
contains a few complete examples.

This isnot a programming textbook. It is assumed that the reader is con-
versant with some programming language. Because of the similarity of
SPP to Fortran and C, experience with those languages is certainly an asset.
It is also assumed that the reader is familiar with IRAF to some extent. That
is, that there is some experience with the concepts behind the structure of
programs and rationale for the system. In addition, some knowledge of the
IRAF command language (cl) is assumed.

Some comments on the syntax in this text may be useful.

• Literal text and reserved keywords to be used in code as-is are set in
typewriter style to distinguish them from names of objects and real
English words. For example,procedure, pointer, or maxch are
keywords that may be used in SPP code. Another example is a directory
or file name, which, as literal text, would be set in typewriter style:
gio$doc/gio.hlp orhelp cursor

xiii

xiv Preface

• When a reserved word ends in an italicized capitalT, theT is a place-
holder intended to be replaced by a data type character (see for example,
“Arithmetic Operators” on page104). These data type specifiers
include:

- x - Complex
- d - Double
- l - Long
- s - String
- c - Char

• Package names are set in bold face, for example,cl or imio.

• Generic names for entities replaced by some specific keyword are set in
italic style, such as a template syntax:for (init; test; control)
demonstrating thefor syntax.

• Square brackets used in a template ([...]) surround optional text.

• Function names are usually referred to in the text without arguments but
with empty parentheses to distinguish them from other identifiers.

SPP is a part of the IRAF application environment. IRAF was devel-
oped by the National Optical Astronomy Observatories (NOAO), primarily
for the analysis of astronomical data. Doug Tody is primarily responsible
for the design and management of the IRAF core system, including SPP.
Additional examples of how to develop IRAF applications code can be
found inAn Introductory User’s Guide to IRAF SPP Programming by R.
Seaman [Seaman92].

Chapter 1 of this manual is based largely on Doug Tody’s A Reference
Manual for the IRAF Subset Preprocessor [Tody83]. Chapter 2 draws from
the design documents for the various interfaces, and Appendix E is based
on earlier document by the STSDAS Group.

Lexical Form 1

C H A P T E R 1 :

Language
 Syntax

The SPP language is based on the Ratfor language. Ratfor, in turn, is
based on Fortran, with extensions for structured control flow, etc. The lexi-
cal form, operators, and control flow constructs are identical to those pro-
vided by Ratfor. The major differences are the data types, the form of a
procedure, the addition of inline strings and character constants, the use of
square brackets for arrays, and thetask statement. In addition, the SPP
I/O facilities provided are quite different and are tailored to the IRAF envi-
ronment. The syntax of the SPP language is fairly straightforward and fun-
damentally similar to most other high-level languages. While it is based on
the Ratfor language, there are elements of C as well as elements of Fortran.
SPP is a preprocessed language. That is, there is no SPP compiler per se,
but it is translated into another compilable language. In fact, SPP is first
translated into Ratfor, which is processed into Fortran. The xc compiler
performs all preprocessing, compilation, and linkage. This chapter
describes the language in detail. Chapter 2 describes the procedure libraries
available to connect a program to the outside world, Chapter 4 describes
how to compile an application as well as how it fits into the IRAF environ-
ment. Appendix B presents some basic examples and hints for writing real
software.

Lexical Form

An SPP program consists of a sequence of lines of text. The length of a
line is arbitrary, but SPP is guaranteed to be able to handle only lines of up
to 160 characters long. The end of each line is marked by a “newline” char-
acter.

1

2 Chapter 1: Language Syntax

Character set
SPP uses the extended ASCII character set which includes the charac-

ters listed in Table 1.1

Table 1.1: SPP Character Set.

Some of these may be used in identifier names and numeric constants.
The remaining ones have specific meaning within the language. SPP does
not distinguish between lower case and upper case except for literal strings
(inside double quotes). Any character may be used in a literal string. The
specific meaning of special characters is described in the appropriate sec-
tion.

White Space
White space is defined as one or more tabs or spaces. A newline nor-

mally marks the end of a statement, and is not considered to be white
space. White space always delimits tokens, the smallest recognized ele-
ments of the language. Keywords and operators will not be recognized as
such if they contain embedded white space. However, the absolute amount
of white space is not relevant and there is no enforced structure of text on
the line. Indentation and judicious use of white space greatly improves
readability. Note, however, that spaces, including trailing blanks, are sig-
nificant in literal quoted strings such as text to be written to standard out-
put.

Characters Type

a-z All lower case letters

A-Z All upper case letters

0-9 All digits

_ &, etc. Special characters

[tab], [space] White space

Lexical Form 3

Comments
Comments begin with the# character and end at the end of the line.

That is, anything after a# is ignored by the preprocessor until the next end
of line. Thus, in-line comments may follow SPP statements.

Continuation
 Statements may span several lines. A line that ends with an operator

(excluding/) or punctuation character (comma or semicolon) is automati-
cally understood to be continued on the following line.

Constants
SPP supports several types of constants. These are described below.

(Predefined constants are described in Appendix A.)

Integer Constants
 A integer constant is a sequence of one or more of the digits in the

range0 through9. An octal constant is a sequence of one or more of the
digits in the range0 through7, followed by the letterb or B. A hexadeci-
mal constant is one of the digits in the range0 through9, followed by zero
or more of the digits0 through9, the letters in the rangea throughf , or
the lettersA throughF, followed by the letterx or X. Note that a hexadeci-
mal constant must begin with a decimal digit (zero through nine) to distin-
guish it from an identifier. The notation shown in Table 1.2 more concisely
summarizes these definitions.

Table 1.2: Integer Constant Notation.

In the notation used above,+ means one or more,* means zero or
more,– implies a range, and| means “or”. Brackets ([...]) define a
class of characters. Thus, “[0–9]+ ” reads “one or more of the characters
in the range 0 through 9.” An integer constant has the same range as the

Integer Type Definition Examples

Decimal [+|-][0-9]+ 42, -999, 0

Octal [+|-][0-7]+[b|B] 42b, 777B

Hexadecimal [+|-][0-9][0-9a-fA-F]*[x|X] 0ffx, 0123ABCx

4 Chapter 1: Language Syntax

range of the underlaying Fortran constant. Since this changes from
machine to machine, SPP has the predefined constantMAX_INT as the
maximum allowable integer (see Appendix A).

Floating Point Constants
A floating point constant (typereal ordouble) consists of a decimal

integer, optionally preceded by a sign (+ or -), followed by a decimal
point, optionally followed by a decimal fraction, followed by one of the
characters:e, E, d, D, followed by a decimal integer, which may be nega-
tive. Either the decimal integer or the decimal fraction part must be present.
The number must contain either the decimal point or the exponent (or
both). Embedded white space is not permitted. The following are all legal
floating point numbers:.01, 100., 100.01, 1E5, 1e-5, -1.00D5,
1.0d0. A complex constant consists of two floating point constants sep-
arated by a comma and enclosed in parenthesesrepresenting the real and
imaginary parts,(1.0,0.0) for example. A floating constant may also
be given in sexagesimal, i.e., in hours and minutes, or in hours, minutes,
and seconds, or any other units in which places of the number vary by a
factor of sixty. Numerical fields are separated by colon characters (:) and
there must be either two or three fields. The number of decimal digits in the
second field and in the integer part of the third field is limited to exactly
two. The decimal point and any fraction is optional. The low level proce-
dures that parse input recognize this syntax as well, making it convenient
for users to enter values in a natural format (time or equatorial coordi-
nates).

Table 1.3: Coordinate and Floating Point Equivalents.

The last example has only two fields with the last including a fraction.
These two fields are then the largest and next largest fields, such as hours
and minutes of time or degrees and minutes of arc. Note that there may be
some problems in rounding, however. The predefined constants

Coordinate Floating Point

00:01 0.017

00:00:01 0.00028

01:00:00 1.0

01:00:00.00 1.0

01:30.7 1.5116

Lexical Form 5

MAX_REAL and MAX_DOUBLE contain the host-dependent maximum
permissible values for real and double constants, respectively.

Character Constants
A character constant consists of from one to four digits delimited at

front and rear by the single quote (’), as opposed to the double quotes used
to delimit string constants). A character constant is numerically equivalent
to the corresponding decimal integer, and may be used wherever an integer
constant would be used. On most systems, characters are represented in
ASCII, therefore the character values are the ASCII values.

Table 1.4: Character Constants.

The backslash character (\) is used to form escape sequences, which are
special non-printed characters. SPP recognizes the following escape
sequences:

Table 1.5: Character Constant Escape Sequences.

Character Constant Decimal Value Interpretation

‘\007’ 7 The integer 7, CTRL G, (BEL)

‘a’ 97 The character a

‘\n’ 10 The newline character

‘\\’ 92 The character \

Escape Interpretation
Decimal
Value

Control
Sequence

ASCII
Mnemonic

\b Backspace 8 CTRL H BS

\f Form feed 12 CTRL L FF

\n Newline 10 CTRL J LF

\r Carriage return 13 CTRL M CR

\t Horizontal tab 9 CTRL I HT

6 Chapter 1: Language Syntax

String Constants
 A string constant is a sequence of characters enclosed in double quotes

("), "image" for example. The double quote itself may be included in
the string by escaping it with a backslash ("abc\"xyz"). All of the
escape sequences given above are recognized. The backslash character
itself must be escaped to be included in the string. A string constant may
not span lines of text. For example,

call strcpy ("This is a long character string
with an embedded newline.", outstr, SZ_LINE)

Would result in the error “Newline while processing string.” However, you
may include a newline in a string explicitly with the newline character,
for example:

call strcpy ("A string\nwith a newline.", outstr, SZ_LINE)

Identifiers
 An identifier is the name used to refer to a variable or a procedure.

Identifiers are constructed of an upper or lower case letter, followed by zero
or more upper or lower case letters, digits, or the underscore character.
Identifiers may be as long as desired, but only the first five characters and
the last character are significant. Identifiers are used for variable names and
procedure names, including built-in, intrinsic functions, as well as other
language constructs. SPP maps all identifiers to a Fortran identifier that
conforms to Fortran 66 standards. That is, they must be six character or
fewer and may not include underscores. SPP performs the mapping by first
removing underscores and taking up to the first five characters and the last
character. If there is a conflict between two SPP identifiers that map to the
same Fortran identifier, the last character of the mapped name is replaced
with a digit in one of the names. It may be instructive to see the mappings.
The mapped SPP and Fortran identifiers are listed as comments in the For-
tran output by xc (using the-f option) at the end of the translated source.
The definition of an identifier may be summarized using the following
rules:
[a–zA–Z][a–zA–Z_0–9]*

Lexical Form 7

See “Constants” on page3 for an explanation of the syntax of this
shorthand. The following example illustrates valid and invalid SPP identifi-
ers:

Figure 1.1: Identifier Syntax.

Note that the last two map to the same Fortran variable. Therefore, if
they were in the same source file, SPP would change the mapping of one to
make them unique.

The identifiers in Figure 1.2 are reserved. That is, do not use them as
variable or procedure names. Note that not all of them are actually used at
present.

Figure 1.2: Reserved Identifiers.

Fortran statements
Fortran statements may be used in SPP source by preceding the state-

ment with a percent character, %. Thexc compiler then passes this state-
ment through unchanged. Remember that Fortrandoes require specific
positioning of the text on the line, unlike SPP. So you must include the nec-
essary spaces between the% escape character and the beginning of the For-
tran statement. For example:

Fortran follows, note
6 spaces after %
% INTEGER INTF

Also keep in mind that while most SPP data types are the same as For-
tran, character strings are not. See “Calling Fortran Subprograms” on
page38 and “Fortran Strings” on page125 for more details.

For2next
MAX_numbers
upts
MAX_VALUES
MAX_VARIABLES

Valid Identifiers Invalid Identifiers

1awhile
up&to

Starts with numeral,
not letter

Contains &, an
invalid special character

auto
begin
bool
break
call
case
char

clgetpar
clputpar
common
complex
data
define
do

double
else
end
entry
extern
false
for

getpix
goto
if
iferr
imstruct
include
int

long
map
next
plot
printf
procedure
putpix

real
repeat
return
scan
short
sizeof
static

struct
switch
task
true
union
unmap
until

virtual
vstruct
while

8 Chapter 1: Language Syntax

Data Types

The subset preprocessor language supports a fairly wide range of data
types. The actual mapping of an SPP data type into a Fortran data type
depends on what the target compiler has to offer. SPP supports the usual
fundamental data types: integer, floating point, complex, boolean, and
character. Some of these have more than one subtype, varying by the size
of each value. The actual size in bytes of a particular data type depends on
the host system. IRAF maintains a structure containing these definitions,
available to the applications programmer.

Table 1.6: Data Types.

Note that the size of the variable depends on its hardware implementa-
tion which in turn depends on the combination of the Fortran compiler and
the host operating system. For example, in VAX Fortran, short integers are
implemented as INTEGER*2, includingchar and strings (char arrays),
and long integers are implemented as INTEGER*4, which is the same
size (four bytes) asINTEGER, by default. In addition to the seven primi-
tive data types, the SPP language provides the abstract type pointer. The
SPP language makes no distinction between pointers to different types of
objects, unlike more strongly typed languages such as C. Theextern

Declaration Data Type Fortran Equivalent

bool Boolean LOGICAL

char Character shortINTEGER

short Short integer shortINTEGER

int Integer INTEGER

long Long integer longINTEGER

real Single precision floating REAL

double Double precision floating DOUBLE PRECISION

complex Single precision complex COMPLEX

char[] String (character array) shortINTEGER array

pointer Pointer to memory INTEGER

extern External function EXTERNAL

Data Types 9

type is also available to declare a function as a variable, as in the Fortran
EXTERNAL statement.

Integer
SPP has three signed integer data types. There is no byte or unsigned

integer data type.

• short - The smallest integer type, usually two bytes.

• int - A signed integer having the size of the fundamental host system
word size, usually 32 bits or four bytes. This is equivalent to the Fortran
INTEGER declaration.

• long - The largest integer type, usually the same asint.

Character
Thechar data type belongs to the family of integer data types, i.e., a

char variable or array behaves like an integer variable or array. Thechar
andshort data types are signed integers (i.e., they may take on negative
values).

String
A string is an array of typechar terminated by an end of string charac-

ter (EOS). Strings may contain only character data (values 0 through 127
decimal), and must be delimited byEOS. A character string may be
declared in either of two ways, depending on whether initialization is
desired:

char input_file[SZ_FNAME]
string legal_codes "efgdox"
char x[15]

The preprocessor automatically adds one to the declared array size, to
allow space for theEOS marker. However, the space used by theEOS
marker is not considered part of the string. Thus, thechar arrayx[15]
will contain 16 elements, space for up to 15 characters, plus theEOS
marker.

It is probably a good idea to use anodd number for the string size decla-
ration so that the resulting array contains an even number of elements. This

10 Chapter 1: Language Syntax

permits alignment of strings onlong word boundaries1. Sincechar is
implemented as FortranINTEGER, whose size is usually four bytes, some-
times referred to as a long word. Access to memory is usually more effi-
cient if the variables are placed matching the addressable pieces

Note that the string value need not fill the declared size. TheEOS char-
acter signals the end of the string. This is in contrast to Fortran strings,
which do not include a terminator character and thus have an implicit size
equal to the declared size and are padded with trailing blanks to the string
length. Rather, SPP strings are practically identical to the concept of strings
in C. Therefore, it is not possible to call a Fortran subroutine directly that
expects a string in the calling sequence. However, there are procedures that
convert between SPP and Fortran strings. (See “Calling Fortran Subpro-
grams” on page38). Note that in most procedures that take a string argu-
ment, there is also an argument that specifies the maximum string size. See
Chapter 2 for specific library procedures.

Floating point
Floating point variables may be single precision (real), double preci-

sion (double), or complex (complex) and behave as the equivalent For-
tran floating point variables.

• real - A single precision value equivalent to the FortranREAL data type.

• double - A double precision floating point value, equivalent to the For-
tranDOUBLE PRECISION data type.

• complex - A pair of single precision floating point values equivalent to
the FortranCOMPLEX data type.

Boolean
The only permissible values for a boolean variable aretrue and

false. They are used as flag variables or used in test expressions of con-
structs such asif andwhile. Note the distinction betweenboolean vari-
ables and theinteger constant parametersYES and NO; the latter are
sometimes used as flags.

1. A glossary of terms appears on page 237.

Declarations 11

Pointer
Pointers are used to reference dynamically allocated memory. See

“Memory Allocation — memio” on page53 for a more complete discus-
sion of dynamically allocated memory. More abstractly, pointers may be
used to reference “structures,” allocated memory with a particular arrange-
ment of variables of differing data types and having a specific structure in
memory.

Declarations

 All SPP variables must be declared. This includes scalars and arrays, as
well as functions. All declarations must precede the body of the procedure.
That is, they must be between theprocedure statement and thebegin
statement. Although the language does notrequire that procedure argu-
ments be declaredbefore local variables and functions, it is customary and
a good practice. The syntax of a type declaration is the same for parame-
ters, variables, and procedures.
type_spec object [, object [,...]]

Here, type_spec may be any of the seven fundamental data types, a
derived type such aspointer, or extern. A list of one or more data
objects follows. Anobject may be a variable, array, or procedure. The dec-
laration for each type of object has a unique syntax, as follows:
procedure identifier()
variable identifier
array identifier[dimension_list]

Note that all declaration statementsmust begin at the first character of
the line. That is, there may be no white space between the beginning of the
line and the beginning of the declaration.

Scalar Variables
Scalar variables are declared with the data type statements and the name

of the variable. For example:
int rows # Number of rows
int cols # Number of columns
real x, y # Coordinates
bool verbose # Print verbose output?

Customarily, most variables are described by an in-line comment.

12 Chapter 1: Language Syntax

Arrays
Arrays are declared similarly to scalars, with the array size appended to

the variable name and enclosed in square brackets ([and]). The sizes of
each dimension are separated by commas within the brackets.
type_spec object[dim[,dim,...]]

Note that here the outer square brackets are required, the inner ones rep-
resent optional multiple dimensions. Arrays may be up to seven dimen-
sions and are one-indexed by default. That is, the first element is numbered
one. Multiply dimensioned arrays are ordered such that the leftmost dimen-
sions vary the fastest, as they are Fortran arrays. Arrays are referenced
using the variable name with the element number(s) insquare brackets
([]). As many dimensions must be used in the reference as in the declara-
tion. It is not permitted to address an array outside its declared scope, but is
not detected by the compiler. The following examples illustrate how to
declare subscripted variables in SPP:

Example 1.1: Declaring Subscripted Variables.

The last example declaresimage to be 100 by 100 elements in size.
The first element would be specified asimage[1,1], followed by
image[2,1], image[3,1], ... image[1,2], image[2,2], ...
image[100,100]. The size of each dimension of an array may be spec-
ified by any compile time constant expression, or by an integer parameter
or parameters, if the array is a formal parameter to the procedure. If the
array is declared as a formal procedure argument and the size of the highest
(rightmost, or most slowly varying) dimension is unknown, the size of that
dimension should be given asARB (for arbitrary). The declared dimension-
ality of an array passed as a formal parameter to a procedure may be less
than or equal to the actual dimensionality of the array. For example, the fol-
lowing example declares several arrays and uses some of them as argu-
ments to functions.

int ivec[100] # An integer vector with 100 elements
char line[SZ_LINE] # A line of text
real image[100,100] # Image buffer

Declarations 13

Example 1.2: Declaring Arrays and Using as Arguments to Functions.

Note that theinteger arrayintarr is declared as two-dimensional
but referenced in the procedure as one-dimensional. Theshort array
3darray is declared as three-dimensional in both the calling and called
procedure. However, in the called procedure, the last dimension is declared
asARB, while the others are declared with passed arguments. The lower
dimensions must be declared explicitly in order for the function to compute
the index of the elements. It is highly recommended to usedefined
(macro) constants instead of absolute constants to declare array sizes. This
makes maintenance much easier in that the value is declared only once. If
the constant is defined outside of a procedure, then any procedure in the
same file may access the same constant, eliminating the need to pass a
dimension to the functions. In addition, if the constants are defined in an
include file they are available to procedures in more than one file.

Functions
External functions, whether supplied by the programmer or part of a

library package must be declared in a manner similar to variables. This
does not include intrinsic functions such assin(), abs(), etc. (see
“Intrinsic Functions” on page36). Functions may be declared to be any
valid SPP data type. For example, if the program includes areal valued
function namedmyfunc, its declaration and invocation might appear as in
Example 1.3.

define SZ_DATA 1024
define ISIZE 100
.
.
real data[SZ_DATA] # 1-D array, SZ_DATA defined above
integer intarr[ISIZE,ISIZE] # 2-D
short 3darray[10,20,30] # 3-D
.
.

call myfunc (data, intarr, 3darray, 10, 20)
.
.
procedure myfunc (data, intarr, 3darray, i, j)
real data[ARB] # Length of array is unknown
integer intarr[ARB] # Referenced as 1-D
short 3darray[i,j,ARB] # 3-D, dimensions passed as arguments
int i, j # Array dimensions

14 Chapter 1: Language Syntax

Example 1.3: Invoking External Functions.

External Functions
The extern data type declares a variable as a function. The name of

the function may then be passed as an actual argument in a procedure call.
In the formal procedure (dummy) arguments, the same argument must also
be declared extern.

Example 1.4: Declaring and Using the extern Data Type.

Common
Global common provides a means for sharing data between separately

compiled procedures. The common statement is a declaration, and must be
used only in the declarations section of a procedure. Each procedure refer-
encing the same common must declare that common in the same way.
common /identifier/ object [, object [, ...]]

For example,
common /vfnxtn/ nextn, iraf, os, map

real rval, x, y, z
real myfunc() # Local function

.

.
rval = myfunc (x, y, z)

extern tick() # Declare tick() as an external function
begin

Call axistick using function tick()
call axistick (igs, ..., tick)

Call axistick using function ticklabel()
call axistick (igs, ..., ticklabel)

end

procedure axistick (igs, ..., func)
pointer igs
.
.
extern func() # Declare the passed function external
begin

.

.
end

Initialization 15

To avoid the possibility of two procedures declaring the same common
area differently in separate procedures, thecommon declaration should be
placed in aninclude file (see “Include Files” on page39). This permits
considerably more reliable and easy maintenance, avoiding changes in one
procedure without changing another.

Initialization

The data Statement
Local variables, arrays, and character strings may be initialized at com-

pile time with thedata statement. Data in a global common maynot be
initialized at compile time. If initialization of data in a global common is
required, it must be done at run time by an initialization procedure. The
syntax of thedata statement is defined identically to the standard Fortran
77DATA statement. Some simple examples follow.
real x, y[2]
char ch[2]
data x/0/, y/1.0,2.0/, ch/’a’,’b’,EOS/

Any data statements must follow all declarations. Note that variables
initialized bydata arenot guaranteed to have that value except the first
time the task is executed from the cl. IRAF tasks executed from the cl may
be cached or stored in the process cache. That is, they are not restarted
from the main procedure except the first time they are executed and after
the process cache is flushed (using the cl taskf lprcache). Therefore, a
variable modified in a task procedure will not have the initialized value the
next time the task is executed, but will have the modified value. It is always
safer to initialize variables with macro symbolic constantdef ine state-
ments or explicit assignment statements.

The string Statement
Character strings may be declared and initialized with thestring

statement. This consists of the keywordstring followed by the identi-
fier name, followed by the initialization value enclosed in double quotes.
Not that there is no explicit string size. Achar array is implicitly declared
the size of the initialization string.
string errmsg "Could not open input"

16 Chapter 1: Language Syntax

Macro Definitions

An SPP macro assigns a symbol or identifier to arbitrary text,
implementingstring substitution. This enables any piece of code to be
hidden by using its defined symbol rather than the text itself. Upon
precompilation, the macro symbol is replaced by its assigned text. The
primary uses of macros are to definesymbolic constants such as
mathematical constants, whose value will not change at run time,
implementing in-line or statement functions, and for creatingdata
structures. Macro definitions allow hiding certain information and can do
much to enhance the ease of modifying and maintaining a program. By
convention, the names of macros are upper case, to distinguish the names
from variables, functions, and other identifiers and to make it clear that a
macro is being used. Macros are created by using thedefine command.
If the macro is defined after theprocedure statement, it must be defined
before thebegin statement, and only that procedure may use it. That is,
its scope is within a single procedure. If a macro is defined before the
procedure statement, it is available to any procedure in the source file.
Macros that are shared by several procedures should be defined in an
include file, particularly if the source is in different files (see “Include
Files” on page39).

Macros may or may not have arguments. An argument is declared in a
macro definition by using a dollar character ($) and a numeral indicating
the argument number. In the macro invocation, arguments are passed in
parentheses,(). Multiple arguments are separated by commas. Macros
without arguments are used primarily to turn explicit constants into
symbolic parameters. Examples are shown throughout this text. Macros
with arguments are used as statement functions and data structure
elements.

Macros incorporating expressions should be enclosed in parentheses to
ensure that the expression is executed with the intended precedence. Macro
definitions may not include string constants. You may use thestring
statement to declare string constants. All other types of constants, constant
expressions, array and procedure references, are allowed, however. The
domain of definition of a macro extends from the line following the macro,
to the end of the file (except for include files). Macros may be recursive and
may be redefined, resulting in no mention by the compiler.

Macro definitions are frequently shared among procedures in several
source files by putting them in aninclude file. This is another source file,

Macro Definitions 17

but has the extension.h and is included in any source by using the
include statement (see “Include Files” on page39). There are many
examples of macro definitions and structures using them in the IRAF
sources, both the system code as well as the applications. Look in the
lib$ andhlib$ directories for the include files for the IRAF system. In
addition, each applications package usually contains one or more header
include files containing numerous examples.

Symbolic Constants
Constants may be declared as variables, initialized with an assignment

statement or by using adata statement. Alternately, a symbolic constant
may be declared as a macro, using adef ine statement. Each time the
macro is used in the code, its name is replaced by the text specified in the
def ine statement when the code is compiled. There is no data storage
allocated nor an assignment executed at run time. It becomes easy to
change the values of constants by changing it once in thedef ine state-
ment rather than throughout the code. The meaning of the code frequently
becomes clearer by referring to constants by name (PI) rather than by
value (3.14159). There are many constants defined automatically as well
as severalinclude files available defining many frequently used con-
stants. See Appendix A for a description of these. The following example
illustrates the use of macros as symbolic constants:

Example 1.5: Using Symbolic Constants.

Use predef ined math constants
include <math.h>
def ine DATA_SIZE 1024
def ine R_ZERO 0.415
.
.
procedure myproc()
real ref
real data[DATA_SIZE] # Locally def ined constant
char errtxt[SZ_LINE] # Predef ined constant
.
.
begin

.

.
Uses PI, def ined in <math.h>
ref = PI * R_ZERO
Assign string, size uses predef ined constant
call strcpy (“End of File”, errtxt, SZ_LINE)
.
.

end

18 Chapter 1: Language Syntax

Data Structures
A data structure allows a set of variables to be treated as a group. These

may include variables of different data types, arrays, strings, pointers, etc.
See “Data Structures” on page58 for more details and additional examples.

Example 1.6: Using Data Structures.

In this example the macros define a simple structure that permits a dif-
ferent way of using an array. Instead of accessing the array by numeric ele-
ment numbers, it permits a different name to be defined for each array
element that may contain inherently different entities. The arraycoeff[]
is redefined as a simple structure containing the fieldsI_TYPE, I_NPIX,
..., andI_COEFF. Defining a structure enhances the readability of a pro-
gram by permitting reference to the fields of the structure by name, rather
than the array element (coeff[2]), and furthermore makes it easier to
modify the structure. The same code could be written without using mac-
ros, referencingcoeff as elements of the array or declaring the equivalent
elements as separate variables. Note that parentheses are used to refer to
elements of the structure, as opposed to square brackets, which refer to

Symbolic constant
define LINEAR 1
.
.
Define the structure (array)
define I_TYPE $1[1]
define I_NPIX $1[2]
.
.
define I_COEFF $1[10]

procedure do_coeff (val1, ...)

DO_COEFF -- This procedure uses the elements of the coeff array,
referencing them by their symbolic names, via macros defined
above.
int val1
int other_val
.
begin

.

.
if (I_TYPE(coeff) == LINEAR) {

I_NPIX(coeff) = val1
I_COEFF(coeff) = 2

} else {
I_NPIX(coeff) = other_val
I_COEFF(coeff) = 3

}
.
.

end

Macro Definitions 19

array elements. The equivalent implementation without using macros
would use an array and reference the elements of the array by their number.
This simple example is straightforward. However, for a complicated exam-
ple, it is usually much clearer to refer to disparate entities by name rather
than by an array element.

Example 1.7: Implementing Example 1.6 with Array Elements.

The same result may be accomplished by using a common block, as is
shown in the next example.

Example 1.8: Implementing Example 1.6 with Common Blocks.

procedure do_coeff (val1, ...)
int val1
int other_val
.
.
int coeff[10] #Array to contain a “structure”
begin

.

.
if (coeff[1] == 1) {

coeff[2] = val1
coeff[10] = 2

} else {
coeff[2] = other_val
coeff[10] = 2

}
.
.

end

Symbolic constant
def ine LINEAR 1
procedure do_coeff (val1, ...)
real val1
int other_val
int i_type
int i_npix
int i_coeff
common /coeffs/ i_type, i_npix, ..., i_coeff
begin

.

.
if (i_type == LINEAR) {

i_npix = val1
i_coeff = 2

} else {
i_npix = other_val
i_coeff = 3

}
.
.

end

20 Chapter 1: Language Syntax

Of course, any other procedure using the variables in the common block
would have to declare it identically. If you do usecommon, put it and the
associated variable declarations in aninclude file so there is only one place
the declarations needs to be modified. It is possible to define a structure
containing any data type. The typesint, real, bool, andpointer are
guaranteed to be the same length, a single word in memory. A common
method of declaring a structure is to use dynamically allocated memory,
referring to the structure elements using theMem[] syntax (see “Memory
Allocation — memio” on page53). In this case, you need not explicitly
specify a different offset for each data type. For types which may differ in
size, however, you must be able to refer to the correct offset and size of a
particular structure element. This applies toshort, long, double,
complex, and particularly tochar and elements treated as arrays. Note
that these should be aligned onlong word boundaries2. The convention is
to declare the variables in the order of longest first to shortest last, with
character strings declared last. There are system defined macros for aiding
in the conversion of pointers to these data types:

Table 1.7: System Macros for Converting Pointers.

The P2T macros permit you to address the nextstructure element
without worrying too much about the word size. These are defined in
hlib$iraf.h since they depend on the host architecture. The following
example declares a structure containing several different data types and
some constants. The difference between this and the previous example is
that the memory containing the structure is allocated dynamically instead
of using a statically allocated array. This additionally permits multiple
instances of the structure to be defined. This is the way many packages

2. The size of a long word is machine dependent, but by correctly using structures
in SPP you will avoid these difficulties.

Macro Converts to Type

P2X complex

P2D double

P2L long

P2S short

P2C char

Macro Definitions 21

handle internal parameters. For example, each time an image is opened
usingimmap(), a structure is allocated containing parameters pertaining
to the image. Multiple images may be opened, each having associated
parameters organized using the same structure.

Example 1.9: Structure Elements Defined in myincl.h.

Note that even though theP2T macros take care of the offsets into the
Mem[] arrays, you still need to keep in mind the size of each structure ele-
ment to find the offset to the next one. Thus,DVAL is offset by two from
XVAL since acomplex is two words. However, adjacent fields have con-
secutive offsets ($1, $1+1, ...) if they occupy a single word. Note also the
use of a second argument inIARRAY to specify the array element, the
position within the chunk of the allocated memory. The above structure
definition would be used by first allocating memory for the structure and
accessing each field using the returned structure pointer, as shown in
Example 1.10.

define LEN_MYSTR 128 # Size of structure
define XVAL Memx[P2X($1)] # complex
define DVAL Memd[P2D($1+2)] # double
define LVAL Meml[P2L($1+4)] # long
define RVAL Memr[($1+6)] # real (no P2R)
define IVAL Memi[($1+7)] # int (no P2I)
define PVAL Memi[$1+8)] # pointer (same as int)
define LENARR 10
define IARRAY Memi[($1+8+$2)] # 10 element int array

Offset the next field by the size of the array
define SVAL Mems[P2S($1+8+LENARR+1)] # short
define CVAL Memc[P2C($1+8+LENARR+2)] # Single char
define LEN_CS 64
define CSVAL Memc[P2C($1+8+LENARR+3)] # Character string

The next field must be offset by the size of the string

22 Chapter 1: Language Syntax

Example 1.10: Allocating and Using Structures by Pointer.

Another way to define arrays or character strings in a macro structure is
to store only a pointer to dynamically allocated memory in a field of the
structure. In this case, the memory for the array has to be allocated explic-
itly in the code in addition to the memory for the structure.

complex xconst
double dconst
real rconst
pointer mstr
int i
.
begin

Allocate memory for the structure
call malloc (mstr, LEN_MYSTR, TY_STRUCT)

Initialize the structure values
XVAL(mstr) = xconst
RVAL(mstr) = rconst

do i = 1, LENARR
Array elements
IARRAY(mstr,i) = ...

Character string
call strcopy (“Hello World”, CSVAL(mstr), 11)
.
.

include myincl.h

Macro Definitions 23

Example 1.11: Defining Arrays in a Structure with Dynamically Allocated
Memory..

Macro Functions
Macros with arguments may also be used to define in-line functions. For

example, here are a couple of definitions of character classes from the sys-
tem includelib$ctype.h :

Example 1.12: Macro Definitions.

def ine LEN_MYSTR2 # Size of the structure
def ine R_ARR_P Memi[($1)] # Pointer to a real array
def ine R_ARRAY Memr[R_ARR_P($1)] # The array
def ine CH_STR_P Memi[($1+1)] # Pointer to a char string
def ine CH_STR Memc[CH_STR_P($1)] # The string

def ine SZ_RARR 1024
pointer mstr
.
.

Allocate memory for the structure
Note the use of TY_STRUCTfor the data type
call malloc (mstr, LEN_MYSTR, TY_STRUCTY)

Allocate memory for the
real array in the structure
call malloc (R_ARR_P(mstr), SZ_RARR, TY_REAL)

Fill in the array (with the constant 100)
call amovkr (100.0, R_ARRAY(mstr), SZ_RARR)

Allocate memory for the
chracter string in the structure
call malloc (CH_STR_P, SZ_LINE, TY_CHAR)

Initialize the string
call strcpy (“Hello World”, CH_STR(mstr), SZ_LINE)
.
.

The structure would be used as follows

def ine IS_UPPER ($1>=’A’&&$1<=’Z’)
def ine IS_LOWER ($1>=’a’&&$1<=’z’)
def ine IS_DIGIT ($1>=’0’&&$1<=’9’)

def ine RADIAN 57.295779513082320877
def ine RADTODEG (($1)*RADIAN)
def ine DEGTORAD (($1)/RADIAN)

Math Functions from
hlib$math.h

Character Functions from
lib$ctype.h

24 Chapter 1: Language Syntax

These are used in the following:

Example 1.13: Using Macro Functions.

Control Flow

SPP provides a full set of control flow constructs found in most modern
languages such as conditional execution and repetition. Some of these have
already appeared in examples. An SPP control flow construct executes a
statement either conditionally or repetitively. The statement to be executed
may be a simple one line statement, acompound statement enclosed in
curly brackets or braces, or thenull statement (; on a line by itself). An
assortment of repetitive constructs are provided for convenience. The sim-
plest constructs arewhile, which tests at the top of the loop, andrepeat
until, which tests at the bottom. Thedo construct is convenient for sim-
ple sequential operations on arrays. The most general repetitive construct is
thefor statement.

• Conditional Constructs

- if

- if...else
- switch

- case

include <char.h>
include <math.h>
procedure myproc ()
char string[SZ_LINE]
real deg_ang
real rad_ang
.
.
begin

Check if character is a digit
if (IS_DIGIT(string[i])) {

.

.
}

Convert degrees to radians
deg_ang = DEGTORAD(rad_ang)

end

Control Flow 25

• Repetitive constructs

- do

- for

- repeat...until
- while

• Branching

- break

- next

- goto

- return

Two statements are provided to interrupt the flow of control through one
of the repetitive constructs. Thebreak statement causes an immediate
exit from the loop, by jumping to the statement following the loop. The
next statement shifts control to the next iteration of a loop. Ifbreak and
next are embedded in a conditional construct which is in turn embedded
in a repetitive construct, it is the outer repetitive construct which will deter-
mine the point to which control is shifted. Note that formatting in the form
of indentation and white space is not mandatory, but makes the code more
readable and therefore easier to maintain.

if...else
Theif andif else constructs are shown below. Theexpr part may

be any boolean expression (see “Expressions” on page31). Thestatement
part may be a simple statement, compound statement enclosed in braces, or
the null statement. The statement(s) will be executed if the expression
resolves totrue. Otherwise, it will fall through to the next block consist-
ing of anelse orelse if.
 if (expr)

statement

[else if (expr)

statement]

[else (expr)

statement]

26 Chapter 1: Language Syntax

The control flow constructs may be nested indefinitely. There may be an
if clause without anelse or else if. There is noend if. A simple
example of anif ... else ... else if is:

Example 1.14: Using if..else.

switch...case
The switch case construct evaluates an integer expression once,

then branches to the matching case. Each case must be a unique integer
constant. The maximum number of cases is limited only by table space
within the compiler. A case may consist of a single integer constant, or a
list of integer constants, separated by commas and terminated by the colon
character:. The special casedefault, if included, is selected if the
switch value does not match any of the other cases. If the switch value does
not match any case, and there is no default case, control passes to the state-
ment following the body of theswitch statement. Inevery case, control
passes to the statement following the switch. Abreak statement is not
needed after each case (in contrast to theswitch ... case statement
in C). Each case of theswitch statement may consist of an arbitrary num-
ber of statements, which do not have to be enclosed in braces. The body of
the switch statement, however, must be enclosed in braces as shown
below.

if (counter >= MAX) {
x = sqrt (a)
call xpoc (x, y, z)

} else if (counter < MIN) {
.
.

}

Control Flow 27

 switch (expr) {
 case list:

statements
[case list:

statements]
 .
 .
[default:

statements]
 }

For example:

Example 1.15: Using switch and case .

Theswitch construct will execute most efficiently if the cases form a
monotonically increasing sequence without large gaps between the cases
(i.e., case 1 , case 2 , case 3 , etc.). Ideally, the cases should be
defined parameters or character constants, rather than explicit numbers.

while
The while statement repetitively executes a statement or a block of

statements as long as the specified condition expression istrue. The condi-
tion is tested at thebeginning of the loop, so it is possible for the statement
not to be executed at all.

while (expr)
statement

switch (operator) {
case ’+’:
 c = a + b
case ’-’:
 c = a - b
default:
 call error (1, "unknown operator")
}

or

switch (key) {
case ’a’, ’A’:
 .
 .
case ’b’, ’B’:
 .
 .
}

28 Chapter 1: Language Syntax

repeat...until
The repeat construct repetitively executes a statement or a block of

statements. The simpler form simply repeats forever. The statement block
might include a break statement to terminate the loop.

The repeat...until form executes the statement as long as the
logical expression in the until statement is false. The condition is tested
at the end of the loop, so the statement will always be executed at least
once.

repeat repeat
statement statement
until (expr)

for
The for construct consists of an initialization part, a test part, a loop

control part, and a statement to be executed. The initialization part consists
of a statement which is executed once before entering the loop. The test
part is a boolean expression, which is tested before each iteration of the
loop. The loop control statement is executed after the last statement in the
body of the for , before branching to the test at the beginning of the loop.
When used in a for statement, next causes a branch to the loop control
statement. The for construct is very general, because of the lack of restric-
tions on the type of initialization and loop control statements chosen. Any
or all of the three parts of the for may be omitted, but the semicolon
delimiters must be present. Only one statement is permitted for each con-
trol section, unlike C.

for (init; test; control)
statement

For example:

Example 1.16: Using for .

This for statement searches the string str backwards until the charac-
ter ’z’ is encountered, or until the beginning of the string is reached. Note
the use of the null statement (;) in the body of the for , since everything
has already been done in the for itself. The strlen procedure is shown
in a later example. Note that the above example may result in an error if the

for (ip=strlen(str); ip > 0 && str[ip] != ’z’; ip=ip-1)
 ;

Control Flow 29

string is null, in which caseip = 0 and the teststr[ip] != ’z’ will
try and access a character before the beginning of the string.

do
The do construct is a special case of thefor construct. It is ideal for

simple array operations, and since it is implemented with the FortranDO
statement, its use should result in particularly efficient code.

do lcp = initial, final [, step]
statement

General expressions are permitted as loop control in thedo statement
but their result must be integers. The loop may run forward or backward,
with any step size. Note that to operate backward, the step must be nega-
tive, and the initial value should be larger than the final value. The body of
thedo will not be executed if the initial value of the loop control parameter
satisfies the termination condition. For example:

Example 1.17: Using do .

break
Thebreak statement causes an immediate exit from a loop by jumping

to the statement following the loop.

next
Thenext statement immediately shifts control to the next iteration of a

loop.

do i = 1, NPIX
 a[i] = abs (a[i])

30 Chapter 1: Language Syntax

return
Thereturn statement assigns a value to a function or returns control

to the calling procedure. This value is passed back to the calling procedure
as the function value. The returned value is an expression which resolves to
the declared data type of the function. For example:

Example 1.18: Using the return Statement.

goto
Thegoto statement unconditionally branches to another point in a pro-

cedure. The target statement is specified by a label, which is an integer con-
stant on the beginning of a line, preceding an executable (unnumbered)
statement. For example:

Example 1.19: Using the goto Statement.

real function func (i, x)
real i
real x
real retval
begin

retval = i * x
return retval

end

call smark (sp)
.
.
goto 10
.
.

10
call sfree (sp)

Expressions 31

Alternately, the label may be assigned a symbolic value using the
define statement. This permits more mnemonic labels.

Example 1.20: Using Symbolic Values with goto Statements.

The underscore at the end of the label (termin_ in the example
above) is not required. but is a recommended convention to permit the
labels to stand out as distinct from other identifiers.

Expressions

An expression may be a numeric constant, a string constant, an array
reference, a call to a typed (function) procedure, or any combination of the
above elements, in combination with one or more unary or binary opera-
tors. Every expression is characterized by a data type and a value. The data
type is fixed at compile time, but the value may be either fixed at compile
time, or calculated at run time. Parentheses may be used to force the com-
piler to evaluate the parts of an expression in a certain order. In the absence
of parenthesis, theprecedence of an operator determines the order of evalu-
ation of an expression. The highest precedence operators are evaluated
first. The precedence of the SPP operators is defined by the order in which
the operators appear in the table under heading “Data Types” on page8.
Procedure call has the highest precedence. The argument list in a procedure
or array reference consists of a list of general expressions separated by
commas. If an expression contains calls to two or more procedures, the
order in which the procedures are evaluated is undefined.

.

.
define termin_ 10
begin

call smark (sp)
.
.
goto termin_
.
.

termin_
call sfree (sp)
.
.

32 Chapter 1: Language Syntax

Operators
 SPP supports the usual arithmetic operators which take operands of any

numeric data type. In addition there are the usual comparison operators
which take operands of any data type with the data type of the result always
boolean. Finally, there are boolean operators taking boolean operands and
also resulting in a boolean.

Table 1.8: Arithmetic and Boolean Operators.

Minus (–) may be a binary operator (have two arguments) or unary
operator (have one argument) operator. As a binary operator it represents
subtraction and as a unary operator it represents negation. The boolean not
(!) is always a unary operator.

Operator Operands Result Operation

+ Numeric Numeric Add

- Numeric Numeric Subtract, negate

* Numeric Numeric Multiply

/ Numeric Numeric Divide

** Numeric Numeric Power

< Numeric Boolean Less than

<= Numeric Boolean Less than or equal to

> Numeric Boolean Greater than

>= Numeric Boolean Greater than or equal to

== Numeric Boolean Equal to

!= Numeric Boolean Not equal to

! Boolean Boolean Not

|| Boolean Boolean Or

&& Boolean Boolean And

| Reserved operator

& Reserved operator

Expressions 33

Mixed Mode Expressions
Binary operators combine two expressions into a single expression. If

the two input expressions are of different data types, the expression is said
to be amixed mode expression. The data type of a mixed mode expression
is defined by the order in which the types of the two input expressions
appear in the table under “Data Types” on page8. The data types are listed
in the table in order of increasing precedence. Thus, the data type which
appears furthest down in this table will be the data type of the combined
expression. For example, anint plus areal produces areal. Mixed
mode expressions involvingbool are illegal. Whilechar expressions are
permitted, there are no string operators or expressions since there is no fun-
damental string data type.

Type Coercion
Type coercion refers to the conversion of an object from one data type

to another. Such conversions may involve loss of information, and hence
are not always reversible. Type coercion occurs automatically in mixed
mode expressions, and in assignment statements. Type coercion is not per-
mitted between booleans and the other data types.

Table 1.9: Data Type Precedence.

The data type of an expression may be coerced by a call to an intrinsic
function. The names of these intrinsic functions are the same as the names
of the data types. Thus, int(x), wherex is of typereal, coercesx to
typeint, whiledouble(x) produces a double precision result.

Data Type Contains

aimag Imaginary part ofcomplex

complex Complex

double Double precision floating point

int Integer

real Single precision floating point

34 Chapter 1: Language Syntax

The Assignment Statement
Theassignment statement assigns the value of the general expression on

the right side to the variable or array element given on the left side. Auto-
matic type coercion will occur during the assignment if necessary (and
legal). Multiple assignments may not be made in a single assignment state-
ment. That is, an assignment statement may have only one equal sign.
However, a line may contain more than one statement, separated by semi-
colons (;).

Example 1.21: Assignment Expressions.

Procedures

Procedures are the basic units of SPP programs. They also include func-
tions, procedures that return a value. The form of aprocedure declara-
tion is shown below.
[data_type] procedure proc_name ([p1 [, p2 [,...]]])
[declarations for procedure arguments]
[declarations for local variables]
[declarations for functions]
[initialization]

begin
[executable statements]

end

The data_type field must be included if the procedure returns a value.
The begin keyword separates the declarations section from the execut-
able body of the procedure, and is required. Theend keyword must follow
the last executable statement. Note that theprocedure statement and the
declaration statementsmust begin in the first character on the line.

All parameters, variables, and typed procedures must be declared. The
SPP language does not permit implicit typing of parameters, variables, or
procedures, unlike Fortran. By convention, declarations of procedure argu-
ments precede local declarations. It is also good practice to use in-line
comments to describe the declarations.

 If a procedure has formal parameters, they should agree in both number
and type in the procedure declaration and when the procedure is called. In

i = 5
z[i] = sqrt (x[i]**2 + y[i]**2)
x1 = 0.0; x2 = 1.0

Procedures 35

particular, beware of short or char parameters in argument lists. An
int may be passed as a parameter to a procedure expecting a short inte-
ger on some machines, but this usage is not portable, and is not detected by
the compiler. The compiler does not verify that a procedure is declared and
used consistently.

 If a procedure returns a value it is known as a function and the calling
program must declare the procedure in a type declaration, and must refer-
ence the procedure in an expression. The function procedure must contain a
return which assigns the value to pass back to the caller as the function
value. A function procedure may return a numerical value, but may not
return an array or string.

 If a procedure does not return a value, the calling program may refer-
ence the procedure only in a call statement. However, the return state-
ment may be used to end the procedure at any point and return control to
the calling procedure.

begin...end
The executable statements in a procedure must be surrounded by

begin and end statements. All declarations must be placed between the
procedure statement and the begin.

{...}
Braces ({ and }) may be used to bracket explicitly groups of statements

intended to be treated as a single statement, for example, in if, for, or
while constructs.

Arguments
Formal or dummy arguments and actual arguments must match in num-

ber and type. That is, the declarations in the calling and called procedure
must be the same for all of the arguments.

36 Chapter 1: Language Syntax

entry Statement
Procedures with multiple entry points are permitted in SPP because they

provide an alternative to global common when several procedures must
access the same data. The multiple entry point mechanism is similar to
block structuring. The multiple entry point construct is only useful for
small problems. If the problem grows too large, an enormous procedure
with many entry points may result, which is difficult to maintain. The form
of a procedure with multiple entry points is shown below. Either all entry
points should be untyped, as in the example, or all entry points should
return values of the same type. Control should only flow forward. Each
entry point should be terminated by areturn statement, or by agoto to
a common section of code which all entry points share. The shared section
of code should be terminated by a singlereturn which all entry points
share.

Example 1.22: Using the entry Statement.

Intrinsic Functions
Any function written as part of the task must be declared. However, SPP

includes several intrinsic functions that need not be declared. The intrinsic
functions are generic functions, meaning that the same function name may
be used regardless of the data type of the arguments. The arguments to trig-
onometric functions are assumed to be in radians, as in Fortran.

procedure push (datum)
int datum # value to be pushed or popped
int stack[SZ_STACK] # the stack
int sp # the stack pointer
data sp/0/
begin

Push datum on the stack, check for overflow
.
.
return

entry pop (datum)
Pop stack into "datum", check for underflow
.
.
return

end

Procedures 37

Table 1.10: Intrinsic Functions

Function Description

abs(a) Absolute value |x|

acos(a) Arccosine, returns angle in radians cos-1 a

asin(a) Arcsine, returns angle in radians sin-1 a

atan(a) Arctangent, returns angle in radians tan-1 a

atan2(a, b) Arctangent, returns angle in radians tan-1 a

char(a) Convert to character

complex(a,b) Complex from real and imaginary parts

conjg(a) Complex conjugate

cos(a) Cosine, argument in radians

cosh(a) Hyperbolic cosine, argument in radians

double(a) Convert to double precision

exp(a) Exponential ea

int(a) Convert to integer, truncate

log(a) Natural logarithm

log10(a) Common logarithm

long(a) Convert to long integer

max(a, b) Maximm

min(a, b) Minimum

mod(a, b) Modulus or remainder a − [a/b]

nint(a) Nearest integer

real(a) Convert to single precision

short(a) Convert to short integer

sin(a) Sine, argument in radians

sinh(a) Hyperbolic sine, argument in radians

sqrt(a) Square root

tan(a) Tangent, argument in radians

tanh(a) Hyperbolic tangent, argument in radians

38 Chapter 1: Language Syntax

Note that the names of the type coercion functions (char, short,
int, real, etc.) are the same as the names of the data types in declaration
statements. The functionslog10, tan, and the hyperbolic functions may
not be called with complex arguments. As in Fortran, the arguments to trig-
onometric functions must be in radians.

Calling Fortran Subprograms
Since SPP is preprocessed into Fortran, in most cases, it is quite

straightforward to call an existing Fortran subroutine from an SPP proce-
dure. The most important caution is in using character strings. SPP strings
are not the same as Fortran strings. SPP strings are implemented as arrays
of integers. However, there are procedures available to transform between
the two: f77pak() converts an SPP string to a Fortran string, and
f77upk() converts a Fortran string to an SPP string. Note that you must
declare the Fortran string in the SPP procedure with a Fortan statement.
This is possible with the% escape as the first character on a line. This indi-
cates to the xc compiler that the following statement should not be pro-
cessed but copied directly to the Fortran code. See also “Expressions” on
page31 and “Fortran Strings” on page125.

Program Structure

An SPP source file may contain any number ofprocedure declara-
tions, zero or onetask statements, any number ofdefine or include
statements, and any number ofhelp text segments. By convention, global
definitions and include file references should appear at the beginning of the
file, followed by the task statement, if any, and the procedure declarations.

Program Structure 39

Example 1.23: Program Structure.

Include Files
Include files permit an external file to be inserted into SPP code. They

are referenced at the beginning of a file to include global definitions that
must be shared among separately compiled files, and within procedures to
reference common block definitions. Two forms allow for system-defined
includes or user-defined includes. Theinclude statement is effectively
replaced by the contents of the named file. Includes may be nested at least
five deep. The most common uses for include files are macro definitions
and structure declarations to be shared by several source files comprising a
task. The name of the file to be included must be delimited by either angle
brackets (<file>) or quotation marks ("file"). The first form is used to ref-
erence the IRAF system include files. This includesexternal packages such
as STSDAS if these are installed. The second, more general, form may be
used to include any file. The file name may include an absolute or relative
directory path. However, the safest and most portable method of accessing
include files in SPP source is to have the source and include files in the
same directory. You then need only refer to the file itself in theinclude
statement without any absolute or relative directory information.

Example 1.24: Using Include Files.

include <stype.h> # Character type definitions
include "widgets.h" # Package definitions file
include "../more.h" # In the parent directory

This file contains the source for the tasks making up the
Widgets analysis package (describe the contents of the file.
define MAX_WIDGETS 50 # Local definitions
define NPIX 512
define LONGITUDE 7:32:23.42
task alpha, beta, epsilon=eps

ALPHA -- (describe the alpha task)
procedure alpha()
.

include <imhdr.h> # Include image header system definitions
include "mytask.h" # Application task definitions
include "../more.h" # In the directory above

40 Chapter 1: Language Syntax

Help Text
Documentation may be embedded in an SPP source file either by com-

menting out the lines of text using the# character or by enclosing the lines
of text within .help and.endhelp directives. If there are only a few
lines of text, it is probably most convenient to comment them out. Large
blocks of text should be enclosed by the help directives, making the text
easier to edit, and accessible to the on-line documentation and text process-
ing tools.

Figure 1.3: Commenting out Documentation Blocks.

The preprocessor ignores comments, and everything between.help
and.endhelp directives. The directives must occur at the beginning of a
line to be recognized. In both cases, the preprocessor ignores the remainder
of the line. The arguments to.help are used by thehelp cl utility, but
are ignored by SPP. Help text may be typed in as it is to appear on the ter-
minal or printer, or it may contain text processing directives. See the cl
lroff documentation for a description of the IRAF text processing direc-
tives. Manual pages (help text) for tasks may be stored either directly in the
source file as help text segments, or in separate files. If separate source and
help files are used, both files conventionally have the same root name, and
the help text file should have the extension.hlp .

The task Statement
The task statement is used to make an IRAF task. A file need not con-

tain a task statement, and may not contain more than a single task state-
ment. Files without task statements are separately compiled to produce
object modules, which may subsequently be linked together to make a task,
or which may be installed in a library. An executable program requires a
task statement, although it may be in a file by itself. This is then linked
with the other procedures making up the task.

task ltask1, ltask2, ltask3=proc3

If the task name is identical to the main procedure of the task, then only
the task name needs to be in thetask statement. The main procedure may

Everything from the ’#’ to the end of line is a comment

.help [keyword [qualifier [package description]]]

help text

.endhelp

Generic Preprocessor 41

have a different name, however. In this case, the procedure name must be
specified in thetask statement with an assignment.

Example 1.25: The task statement.

Generic Preprocessor

There are many cases in which the same algorithm may need to be
implemented for several different data types. Thegeneric preprocessor, in
addition to SPP converts a generic procedure into a set of procedures spe-
cific to particular data types. We mention this briefly here and refer to a
more detailed discussion in “Generic Preprocessor” on page167 andhelp
generic in the IRAF cl, which describe all of the preprocessor directives
and the command used to process generic code. Many useful examples of
generic procedures exist in IRAF, particularly in thevops package, a
library of generic procedures dealing with vector operations implemented
for the SPP data types. See “Vector (Array) Operators — vops” on
page103 for a description of this package. To indicate the flavor of this
facility, here is an example of generic code from thevops package:

Example 1.26: Generic Code from vops Package.

The generic preprocessor will replace the$t suffix on the procedure
name by the single character initial of the data type (s, i, etc.). The prepro-
cessor directivePIXEL is replaced by the appropriate data type declaration
(short, int, etc.).

task doit = t_doit

procedure t_doit ()
begin

.

.
end

AABS -- Compute the absolute value of a vector (generic).

procedure aabs$t (a, b, npix)

PIXEL a[ARB], b[ARB]
int npix, i

begin
do i = 1, npix

b[i] = abs(a[i])
end

42 Chapter 1: Language Syntax

 43

C H A P T E R 2 :

Libraries and Packages:
The VOS Interface

The IRAF Virtual Operating System (VOS) comprises several
libraries of procedures that provide the interface to IRAF, permitting an
SPP application to access images, cl parameters and so forth. It provides an
environment for developing scientific analysis applications. The libraries
described here are available to any SPP application without explicitly
including the library when linking. Other libraries exist that may be
included. In addition, an applications package may create its own library.

Several VOS packages have associated include files which may be used
for predefined constants, structures, and other macros. These may be
included in code with the<file> syntax (see “Include Files” on page36).
Note that here the termpackage refers to a set of procedures in a library,
not a set of applications tasks available in the IRAF cl.

The VOS procedures are grouped into library packages of related
procedures. Most of them deal with input and output of various forms.

• clio - Interaction with the cl

• memio - Dynamic memory allocation

• imio - Image access

• fmtio - Formatted I/O

• fio - Basic file I/O

• vops - Vector (array) operations

• gio - Vector graphics

• tty - Terminal I/O

• osb - Bit and byte operations

43

44 Chapter 2: Libraries and Packages: The VOS Interface

• plio - Pixel lists

• mwcs - World coordinate system

• etc - Miscellaneous

The procedures described here represent the normal interface between
an SPP program and the IRAF environment. That is, they are theonly
procedures that should be called. While additional, lower-level, procedures
exist in the library, these should not be used. The top-level interface is
intended to be stable and well documented. The remainder of the library
cannot be guaranteed to remain free of modifications such as changes to the
calling sequence. Using lower level procedures in portable, maintainable
code represents aninterface violation and causes potential maintenance
problems.

This chapter describes many of the VOS package library procedures.
While every attempt has been made to provide comprehensive and
up-to-date information on the VOS packages, there are quite a few libraries
and the number of individual procedures is quite large. An exhaustive
description of each procedure and its calling sequence is beyond the scope
of this reference. In particular, it is not practical to describe each procedure
in extensive detail. Nor is there room to fully describe every calling
argument to every procedure. However, in many cases it should be clear
what the data type and meaning are for most of them. In many cases, they
are discussed in the text. Examples are used throughout to demonstrate the
most commonly used procedures. Ideally, there would be a complete
document for every library package describing each procedure and its
calling arguments in detail. An example isgio with a quite complete
reference. However, not every package has such complete documentation.

There is usually a table describing the important procedures in a given
library package. If there is a variable and equals sign then the procedure is
a function. If there is no variable assignment, the procedure is invoked by a
call statement. It should be fairly clear what is the data type of the
function by the variable name. In many cases, a given procedure is
implemented separately for several different SPP data types. That is, there
is a separate procedure for each data type. In that case, there is usually a
single entry in the table for that family of procedures with the suffix t
indicating to specify the data type with the initial of the data type name.

You should refer to the source code for the definitive description of any
procedure. The best sources for such information is in the IRAF system
itself. Each package resides in a separate directory below the IRAFsys
directory, with the same name as the package. This directory contains the

Interaction with the cl — clio 45

source code for the package library procedures. In addition, there is usually
a doc directory below this source directory, containing help files or
additional documentation. For example, the directorysys$imio contains
the source and additional documentation for theimio library. Note also that
the IRAF cl defines an environment variable for each library with the same
name,imio orfmtio, for example. Therefore, the source toimmap() is
in imio$immap.x. It is quite instructive to look at the source files as well
as the associated documentation. Note however, that these source
directories containall of the library procedures. This includes lower level
code, not intended to be called by SPP applications tasks, but by the library
procedures themselves.

2.1 Interaction with the cl — clio

The clio package allows an application to interact with the IRAF
command language (cl). This includes mostly reading and writing cl
parameters. In addition, there is a set of procedures for handlingfilename
templates, lists of input files, as well as satisfying interactive graphics input
(cursor position). Parameters in the cl may have a data type attribute as SPP
parameters are typed. The SPP data type need not match the cl parameter’s
data type, however. The data type is silently converted byclio. The typed
procedures returning cl parameter values refer to the data type of the SPP
variables accepting the value of the cl parameter.

Ordinary Parameters
There is a separate read (get) and write (put) procedure for each SPP

data type. All of the get procedures,except strings, are functions, returning
the value of the cl parameter as the function value. Each function takes a
single argument of typechar, the cl parameter name. When the function is
called, the cl will attempt to resolve the value of the parameter from a
default in a parameter file or prompt for input from the standard input
streamSTDIN (see “Formatted I/O — fmtio” on page78). If the program
is not connected to the cl (i.e., if it is run stand-alone), a prompt will be
written toSTDOUT and the value of the parameter is read fromSTDIN. In

46 Chapter 2: Libraries and Packages: The VOS Interface

the case of string parameters, there is a get and put procedure, returning the
string value in a calling argument.

Table 2.1: Parameter I/O Functions.

The procedures to read and write numeric parameters are implemented
for each SPP data type: bool, char, short, int, long,
real, double, and complex. Use the appropriate procedure by
replacingT with the first letter of the corresponding data type, clgetr()
for typereal or clgeti() for typeinteger, for example. Note that
the data type of the returned value need not match the parameter’s data
type. Implicit type conversion is done byclio.

 The parname parameter is a char variable containing the
parameter name. This may be a literal string, a predefined string parameter
constant, or a character variable containing the desired string (which may
also have been read withclgstr()). In the case ofclgstr(), the
additional parametermaxch specifies the size of the string parameter. The
following example illustratesclio by reading several parameters from the
cl.

Function Call Purpose

value = clgetT (parname) Get the value of a cl parameter

clgstr (parname, string, maxch) Get a cl string parameter

value = clputT (parname, value) Put the value of a cl parameter

clpstr (parname, string) Put a cl string parameter

clgwrd (parname, keyword, maxchar,
dictionary)

Get an enumerated string

Interaction with the cl — clio 47

Example 2.1: Reading Parameters From the cl.

Note the literal string constants for the parameter names and the
predefined constantSZ_LINE specifying the size of the returned string.
Also, note the distintion between the variable assigned a value in the code
and the parameter as defined in the cl. There is noshort data type in the
cl, only integers. The procedureclgets() reads a cl parameter of any
data type into a short variable. The cl parametershortpar is declared as
an integer but the variablesval is declaredshort .

Such a procedure implemented as part of a task may use aparameter file
to specify attributes of parameters. This is a text file with a root name the
same as the task name and an extension.par . The above example defines
a task readcl whose parameter file would be calledreadcl.par ,
containing the lines shown in. See “Parameter Files” on page171 for a
more detailed description of.par files.

Example 2.2: Parameter File.

task readcl

procedure readcl ()

int ival # An integer
short sval # A short integer
real rval # A real
char strval[SZ_LINE] # A string of size SZ_LINE

(a predef ined constant)

string ipar "intpar" # The cl parameter name of an integer
string spar "shortpar" # The cl parameter name of a short
string rpar "realpar" # The cl parameter name of a real

begin
Use clget functions for numeric parameters
String variables contain the parameter names
ival = clgeti (ipar) # Get an int
rval = clgetr (rpar) # Get a real
sval = clgets (spar) # Get a short

Get the string
call clgstr ("strpar", strval, SZ_LINE)

end

int clgeti()

short clgets()
real clgetr()

Parameter f ile for task readcl
intpar,i,a,0,1,20,"Integer parameter"
realpar,r,a,-1.2,-10.9,99.8,"Floating point parameter"
strpar,s,a,"hello",,,"String parameter"

shortpar,i,a,1,,,"Short parameter"
There aren’t really shorts in the cl, only integers

48 Chapter 2: Libraries and Packages: The VOS Interface

The clgwrd() procedure returns the value of anenumerated string
parameter. This is a string parameter whose value may take on one of a list
of possible values. The list of possibilities is specified in the parameter file
in the minimum value field as a quoted string with values delimited by a
vertical bar. For example the parameter color might permit the selection of
several possible values. The definition in the parameter file might be:

color,s,h,"black","|black|white|red|green|blue|",,"color"

The cl uses minimum matching to determine the desired value from the
smallest unique initial characters the user specifies for the string. You must
specify thedictionary or the list of possible values toclgwrd() in the
dictionary argument returns the full word in thekeyword argument.

One pitfall is the potential mismatch between the enumeration string in
the parameter file and the dictionary in the source. However, it is possible
to read the enumeration string usingclgstr() since it is possible to read
the individual components of the parameter definition in addition to its
value. The following would return the dictionary for thecolor parameter
as defined above:

call clgstr ("color.p_min", colordict, SZ_LINE)

Wherecolordict is a string variable and would be used in the clg-
wrd() call:

call clgwrd ("color", color SZ_LINE, colordict,)

pset parameters
Any cl parameter may be included in apset. A pset is a set of cl

parameters referred to as a group via a single parameter of a task. The pset
itself is defined as a task in the cl and is defined by a.par file. In the SPP
code, however, pset parameters are accessed identically to any other task
parameter. While youmay prepend the pset name to the parameter name,
this is not necessary and not recommended.

List Structured Parameters
List structured or list-directed parameters permit a number of values to

be accessed by an application from a file specified by name. The following
procedures get list structured parameters from the cl. The first two return a
status value which isEOF on reading at the end of file on the input. The

Interaction with the cl — clio 49

clglpt() procedures return the value of the appropriate data type as the
function value.

Table 2.2: List-Structured Parameter Functions.

The procedure represented byclglpT() reads a numeric list
structured parameter and is implemented for the usual SPP data types:
bool, char, short, int, long, real, double, andcomplex. It
returns the value as the second procedure argument, whose data type
should match the procedure. The function return value is an integer status
that takes the valueEOF upon reading after the last parameter in the list.
The other procedure,clglstr() returns the length of the string read as
theint function value, orEOF after reading the last string. For example,
we may wish to read integer values from a list filenameint_file.txt
which contains the following:

1
22
333
4444
55555
666666

If we add the following statements to the programreadcl in the
previous section:

.

.
while (clglpi ("intval", ival) != EOF) {
 call printf ("integer value: %d\n")
 call pargi (ival)
}
.
.

then the parameter file should have the following line:

intval,*i,a,"int_file.txt",,,"> List of integer elements"

Procedure Call Purpose

status = clglpT (param, value) Get a numeric parameter

len = clglstr (param, outstr, maxch) Get a string parameter

50 Chapter 2: Libraries and Packages: The VOS Interface

Notice the additional flexibility to input data to a program; changing the
input list filename gives you another set of values.

Vector Parameters
It is possible to access a group of parameter values using a single root

parameter name. This provides the capability of vectors or arrays in cl
parameters. The array structure, default values, ranges, etc. may be
specified in the.par file as with scalar parameters. However, the syntax
is slightly different. For example, the following declares a singly
dimensioned real array having three elements.

vecreal,ar,a,1,3,1,,,"real vector elements", 0.0,1.2,3

Note that the charactera precedes the data type field, the next three
fields specify the dimensionality, size, and starting index, and the default
values areafter the prompt string. The following code (Example2.3) will
read the above values.

Example 2.3: Reading Vector Parameters.

Note that the element number of the cl parameter vector is enclosed in
square brackets following the parameter name and is part of the string
passed to theclgetT() andclputT() procedures.

real arr[3]
.
.

arr[1] = clgetr("vecreal[1]")
arr[2] = clgetr("vecreal[2]")
arr[3] = clgetr("vecreal[3]")

Interaction with the cl — clio 51

Interactive Graphics Cursor
The cl treats an interactive graphics input cursor read similarly to a list

structured cl parameter query. When the user asks for a cursor position,
either through a cl query or through a task, the cl issues a prompt which the
user must satisfy with some action. In the case of a normal cl parameter, the
user may type in the value of the parameter. For a cursor read (assuming a
graphics terminal with cursor capability) the graphics entersgraphics input
(GIN) mode. The user may then move the cursor on the screen. To
terminate graphics mode, the user types a key on the keyboard. This
satisfies the query prompt and the cl returns the cursor position. The
clgcur() procedure returns the next cursor value from a list structured
cursor type parameter. The format of a cursor value is as follows:

x y wcs key sval

where

• x, y - are thex andy cursor coordinates

• wcs - is the world coordinate system in which cursor coordinates are
given

• key - is the key (stroke) value associated with cursor read

• sval - is an optional string associated with the given key

All of the fields need not be given, and extra fields may be supplied and
will be either ignored or returned insval. Thex y, andwcs fields may be
omitted, in which case the input iskey sval, causingINDEF INDEF 0
key sval to be returned, exactly as if theINDEF INDEF 0 had been typed
in. The number of fields read is returned as the function value;EOF is
returned when the end of the cursor list is reached. Since the cl treats a
cursor query as a parameter, the clio procedureclgcur() is used to
perform interactive graphics input from an SPP task. Its calling sequence
is:

call clgcur (param, wx, wy, wcs, key, strval, maxch)

52 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.3: Graphics Cursor Parameters.

Note that the argumentkey is an int typed variable, notchar as
might be expected.

There are two flavors of cursor available through the cl: for vector
graphics and image display. The cl data type of a cursor parameter may be
either *gcur for a graphics cursor parameter or*imcur for an image
display cursor parameter.

See “Vector Graphics — gio” on page114 for a brief description of the
graphics procedures. See thegio reference manual (Graphics I/O Design
[Tody84b]) for a more complete description of cursor interaction.

cl Command
A quite general method is available to execute any cl command (task)

from an SPP application. The proceduresclcmd() andclcmdw() send
a string as a command line to the cl. The single argument to both
procedures is a string containing the command to execute. The only
difference between the two procedures is thatclcmdw() waits for the
completion of the command before returning to the caller.

Table 2.4: CL Command Execution Procedures.

Field Types and Names Contents

char param cl parameter name

real wx, wy World coordinates of cursor

int wcs Index of WCS at cursor position

int key Keystroke value used to return cursor

char strval [maxch] String command ifkey = ‘:’

int maxch Size ofstrval

Procedure Call Purpose

clcmd (cmd) Send a command line to the cl

clcmdw (cmd) Send a command to the cl and wait for completion

Memory Allocation — memio 53

Sending an explicit command to the cl requires that the task have
detailed knowledge of the capabilities of the cl and of the syntax of the
command language. This means that the task is very dependent on the cl
and may no longer work if the cl is modified, or if there is more than one
version of the cl in use in a system. For this reasonclcmd() should only
be used where it is truly necessary, usually only in system utilities.

2.2 Memory Allocation — memio

 Memory may be dynamically allocated within an SPP application. The
memory is referenced by apointer, anint value containing the memory
location of the first element of the buffer. The allocated memory may then
be accessed as if it were a statically allocated array. The advantages to
allocating memory dynamically are to reduce the size of compiled code
and to allocate arrays whose size is not known at compile time. The pointer
is used in subsequent procedure calls to refer to the allocated memory. The
Mem[] construct is used to access the data. When passed to a procedure, the
data are treated simply as an SPP array.

Pointers are indices into (one indexed) Fortran arrays. A pointer to an
object of one data type will in general have a different value than a pointer
to an object of a different data type, even if the objects are stored at the
same physical address. Pointers have strict alignment requirements, and it
is not always possible to coerce the type of a pointer. For this reason, the
pointers returned bymalloc() andsalloc() are always aligned for all
data types, regardless of the data type requested.

There are two types of dynamically allocated memory: stack and heap.
They are treated identically in terms of dealing with the allocated data, but
the mechanics of the allocation differ slightly.

54 Chapter 2: Libraries and Packages: The VOS Interface

malloc and relatives
Heap memory is used for arbitrarily large buffers and the resulting

pointers may be stored and passed to calling and called procedures.

Table 2.5: Heap Memory Allocation Procedures.

Many VOS library procedures return a pointer allocated bymalloc(),
the imio procedures, for example. Be sure to free the memory by using the
mfree() procedure. Note that themfree() procedure in addition to the
allocation procedures requires the data type of the allocated memory as an
argument. These data types are passed as predefined parameter constants,
defined by the system, for example,TY_INT, TY_REAL, etc.

Table 2.6: Memory Allocation Parameter Data Types.

Memory allocated explicitly withmalloc() should be freed after use
by mfree(). Pointers allocated implicitly, by immap(), etc., for

Procedure and Variables Purpose

malloc (memptr, size, datatype) Allocate heap memory

calloc (memptr, size, datatype) Allocate cleared heap memory

realloc (memptr, size, datatype) Reallocate memory

mfree (memptr, datatype) Free heap memory

Parameter Word Size Data Type

TY_BOOL SZ_BOOL Boolean

TY_CHAR SZ_CHAR Character

TY_SHORT SZ_SHORT Short integer

TY_INT SZ_INT Integer

TY_LONG SZ_LONG Long integer

TY_REAL SZ_REAL Single precision real

TY_DOUBLE SZ_DOUBLE Double precision real

TY_COMPLEX SZ_COMPLEX Complex

TY_STRUCT SZ_STRUCT Structure

Memory Allocation — memio 55

example, should not be freed explicitly. They will be freed by the
appropriate close procedure such asimunmap(). The realloc()
procedure changes the size of a previously allocated buffer, copying the
contents of the buffer if necessary. This is useful when allocating memory
of unspecified size. For example, when reading fromSTDIN, you might
allocate a data buffer initially with some default size. After reading all of
the data you may wish to userealloc() to insure that the buffer is only
as big as the amount of the data read. Note thatrealloc() will allocate
new memory if the passed pointer isNULL, so it may be used in place of
malloc(). This may be useful in a loop in which you need not use
malloc() the first time you enter the loop. The only difference between
malloc() andcalloc() is that the latter sets all of the buffer values to
zero, while the former retains the contents of the memory locations, which
should be considered garbage. The following example illustrates allocating
a block of memory usingmalloc() and calling a procedure to perform
some operation on the values.

56 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.4: Allocating and Using a Memory Block.

Note that the dostuff() procedure need not have nested loops if the
operation is independent of column or row information. In fact, the vector
operator (vops) procedures may be used for any dimensionality of arrays.

procedure mexamp (ncols, nrows)

Dynamically allocate memory and perform some operation on array

int ncols, nrows # Number of columns and rows
pointer buff # The memory buffer pointer

begin
Allocate a real memory buffer with the passed size
and data type
call malloc (buff, ncols*nrows, TY_REAL)

Operate on the buffer, dereferenced with Memr
Pass the size of the array
call dostuff (Memr[buff], ncols, nrows)

Free the memory
Pass the data type
call mfree (buff, TY_REAL)

end

procedure dostuff (buffer, ncols, nrows)

Operate on a 2-D array

real buffer[ncols,nrows]
int ncols, nrows
int i, j

begin
do j = 1, nrows {

do i = 1, ncols {
.

.
buffer[i,j] = ...
.
.
}

}
end

Memory Allocation — memio 57

smark and salloc

Stack memory is useful for small buffers local to a procedure.

Table 2.7: Stack Memory Procedures.

The salloc() procedure allocates stack memory. This is a
preallocated block of memory, a chunk of which may be used temporarily
by a task. This differs frommalloc() which allocates the memory at the
time it is called. To usesalloc(), a stack pointer must be referenced first
using thesmark() procedure. This marks the beginning of the block of
memory to be referenced. It is not necessary (nor possible) to free the
individual memory buffers allocated using salloc(). However, the
stack pointer should be reset usingsfree() at the end of the procedure.
The memory pointer returned bysalloc() should not be passed back to
a calling procedure but may be passed down to a called procedure.
Otherwise stack memory is used identically to heap memory allocated by
malloc() orcalloc(), see Example2.5.

Example 2.5: Using Stack Memory.

Procedure Call Purpose

smark (stkptr) Mark memory stack

salloc (memptr, size, datatype) Allocate stack memory

sfree (stkptr) Free memory stack

pointer sp
pointer cbuf
pointer rbuf

begin
Mark the memory stack
call smark (sp)

Allocate a character buffer
call salloc (cbuf, SZ_LINE, TY_CHAR)

Allocate a real buffer
call salloc (rbuf, npix, TY_REAL)

Pass the memory buffers to a procedure
call myproc (Memc[cbuf], SZ_LINE, Memr[rbuf], npix)

Free the memory stack
call sfree (sp)

end

58 Chapter 2: Libraries and Packages: The VOS Interface

Data Structures
 Dynamic memory is often used in creating and using data structures

(see “Macro Definitions” on page16 and “Data Structures” on page18 for
more details and additional examples). The structure is described by macro
define statements declaring the components of the structure. These may
be based on dynamically allocated memory, in which case the memory
must be allocated before the structure is addressed, and the memory pointer
passed as an argument to the structure element. Example2.6 shows some
code that may reside in aninclude file; it declares a structure consisting
of integers and strings.

Example 2.6: Declaring a Data Structure.

The strings (SPOOL_OUTPUT, for example) are in turn declared using
dynamically allocated memory, the pointer being saved in another element
of the structure. The elements are addressed with theMem constructs. To
use this structure, the memory must first be allocated usingmalloc() or
calloc() with a data type ofTY_STRUCT (see Example2.7). The first
line of the macro provides the number of elements to allocate. Elements of
the structure are referenced name, with the pointer to the dynamically
allocated memory passed as an argument to the macro.

Example 2.7: Using the Memory Structure.

define LEN_IGS 20 # Structure size
define CMD_STATE Memi[($1)+1] # Command state
define LAST_CMD_PNT Memi[($1)+5] # Last command buffer location
define WRITE_CMD Memi[($1)+7] # Write command to buffer?
define SP_OUT_P Memi[($1)+8] # Temp output file name pointer
define SPOOL_OUTPUT Memc[SP_OUT_P($1)] # Temp output file name
define SYM_TABLE Memi[($1)+11] # Symbol table pointer
define TOKEN_VALUE Memi[($1)+12] # Token value structure
define INPUT_SOURCE Memi[($1)+13] # Input stream descriptor
define STATE_STACK Memi[($1)+15] # Command state stack
define PLOT_PARMS Memi[($1)+18] # Plot parameters structure

Allocate the structure
call malloc (igs, LEN_IGS, TY_STRUCT)
.
.
Allocate string structure elements
call malloc (SP_OUT_P(igs), SZ_LINE, TY_CHAR)
call malloc (SP_OUT_P(igs), SZ_LINE, TY_CHAR)
.
.
Assign an integer structure element
INPUT_SOURCE(igs) = STDIN
.
.
Fill the string structure element
call strcpy ("test", SPOOL_OUTPUT(igs), SZ_LINE)

Memory Allocation — memio 59

There may also be substructures, pointed to by an element of the
primary structure. Example2.8 shows a substructure called from thegio
structure defined inlib$gset.h.

Example 2.8: Substructures of a Data Structure.

Example2.8 defines a structure for storing polyline attributes.
GP_PLAP is a member of the top-levelgio structure andPL_LTYPE for
example is a member of the polyline substructure. These would be used in
code as shown in Example2.9.

Example 2.9: Using the Substructures.

A more complicated example (Example2.10) illustrates a
two-dimensional array in a substructure, again fromgio. Note the use of
two arguments to the macro, referred to as$1 and$2 in the definition.

Example2.11 shows how the two-dimensional in the structure could be
used. Note the two arguments to the macroGP_WCSPTR, one of which is
itself a symbolic definition,GP_WCS, also part of the data structure. The
structure defined in Example2.10 is a fragment of thegio header file
gset.h, included in the source example.

define GP_PLAP ($1+20) # polyline attributes
.
.
define LEN_PL 4
define PL_STATE Memi[$1] # polyline attributes
define PL_LTYPE Memi[$1+1]
define PL_WIDTH Memi[$1+2]
define PL_COLOR Memi[$1+3]

include <gio.h>
.
.
pointer plap, pmap
.
.
begin

plap = GP_PLAP(gp)
.
.
PL_LTYPE(plap) = linetype
.
.

60 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.10: Defining a 2-Dimensional Array in a Structure.

Example 2.11: Using the Structure.

2.3 Accessing Images — imio

Procedures in the sfimio library allow an SPP application to read and
write IRAF images. IRAF supports several different image formats,
including old IRAF, (OIF format), GEIS or STSDAS (STF format) and
PROS (QPOE format). However, the sameimio procedures are used
regardless of the specific format of the image so the formats are transparent

define LEN_WCS 11
define LEN_WCSARRAY (LEN_WCS*MAX_WCS)
.
.
define GP_WCSPTR (($2*LEN_WCS+$1+150) # pointer to WCS substructure
.
.
WCS substructure
define WCS_WX1 Memr[$1] # window coordinates
define WCS_WX2 Memr[$1+1]
define WCS_WY1 Memr[$1+2]
.
.
define WCS_XTRAN Memi[$1+8] # type of scaling (linear,log)
define WCS_YTRAN Memi[$1+9]
define WCS_CLIP Memi[$1+10] # clip at viewport boundary?

include <gio.h>

procedure gswind (gp, x1, x2, y1, y2)

pointer gp # graphics descriptor
real x1, x2 # range of world coords in X
real y1, y2 # range of world coords in Y

pointer w

begin
w = GP_WCSPTR (gp, GP_WCS(gp))
if (!IS_INDEF(x1))

WCS_WX1(w) = x1
.
.
if (!IS_INDEF(y2))

WCS_WY2(w) = y2
.
.

end

Accessing Images — imio 61

to the applications program. The details of decoding the image files are
buried in thekernels beneath the applications level ofimio. The user
specifies the format type when specifying the image names as input or
output to the task. Theimtype cl environment variable also may be used
to specify the default image type. A specific image name extension
overrides the value ofimtype. The imio interface supports images of up
to seven dimensions. In a sense, all images are multidimensional, with the
higher, unused axis lengths set to one. Ann dimensional image may
therefore be accessed by a program coded to operate upon anm
dimensional image.

Open
To access an image, you must first open it using theimmap()

function.

Table 2.8: Image I/O Functions.

This returns a pointer type variable that is the address of the image
descriptor structure. Theimmap() function has three arguments. The first
argument is the image filename, passed as a string, the second is a mode
specifying how to access the image. It is an integer usually passed as a
symbolic constant parameter. The access mode argument may be one of the
following symbolic parameters:

Procedure Call Purpose

imp = immap (filename, mode, template) Open an image file

imunmap (imp) Close an image

62 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.9: Access Mode Parameters.

The third argument is the pointer to another image, already opened with
anotherimmap() call. It is used only if the access mode isNEW_COPY
and specifies atemplate image. The header of the template image will be
copied to the header of the new image, but not the pixel values. That is, the
structure of the new output image will be similar to the existing image, but
the pixels will be different.

imunmap() releases any dynamically allocated memory used for file
and I/O buffers. Note thatimio refers to images by the header filename,
regardless of the format of the image. Therefore, if you do specify an
extension on the image filename in a call toimmap(), use the header file
extension, not the pixel file.

Table 2.10: Image Formats.

For example,

im = immap ("taurus.imh", READ_ONLY, 0)

You may omit the extension, in which caseimio will interpret the filename
as an image header. If there is only one image with the specified root name,
then it will open that one, regardless of the image format. If there are two

Parameter Access Mode

READ_ONLY Read only

READ_WRITE Read and write

WRITE_ONLY Write only

NEW_FILE New image

NEW_COPY New image, header copied from open image

NEW_IMAGE Alias forNEW_FILE

Extension Image Format

.imh OIF, Old IRAF

.hhh STF, STScI GEIS

.qp QPOE, PROS

Accessing Images — imio 63

images with the same root but different extensions (different image for-
mats),imio will open the one in OIF (IRAF) format.

Of course, it is usually up to the user to specify a filename. You need not
append an extension unless you wish to force a particular format, or if you
wish to use a non-standard extension. If the task creates an image from
scratch (usingNEW_IMAGE, not copying an existing image) there is an
additional way to control the image format. The cl environment variable
imtype specifies the image format if there is no extension to the output
image filename.

 Image data are passed fromimio procedures to the application via
pointers in dynamically allocated memory. These imio procedures
comprise families of calls to read and write the pixel data. Eachpointer
typed function returns a pointer to dynamically allocated memory
containing the specified part of the image.

Arbitrary Line I/O
These procedures read image data one line at a time. They allocate a

block of memory containing the pixels and return the memory pointer as
the function value.

Table 2.11: Image Line I/O Functions.

All of the above procedures are implemented for the usual SPP numeric
data types:short, int, long, real, double, andcomplex. That is,
the procedure name represents the data type of the SPP buffer that holds the
image pixels, not necessarily the data type of the image file. The returned
pointer type function value is a pointer to memory allocated bymemio for
the line of pixels from the image. This differs from the image file descriptor

Procedure Call Purpose

bpt = imgl1T (imp) Get a 1-D image

bpt = imgl2T (imp, line) Get a line from a 2-D image

bpt = imgl3T (imp, line, band) Get a line from a 3-D image

bpt = impl1T (imp) Put a 1-D image

bpt = impl2T (imp, line) Put a line to a 2-D image

bpt = impl3T (imp, line, band) Put a line to a 3-D image

64 Chapter 2: Libraries and Packages: The VOS Interface

(imp above), which is a pointer to a structure containing the attributes of
the image as a whole. The pixel data may be passed to another procedure
via theMem[] construct.

You need not explicitly deallocate memory allocated by any imio
procedure. However, you should callimunmap() for any images opened
with immap(). This will flush I/O buffers and free allocated memory.

 Note that the output (imp...()) procedures as well as the input
(img...()) procedures return a pointer to dynamic memory. The pixels
are written to the file when the output buffer is full; in some cases, not until
the image is closed, or when flushed explicitly. When writing to an output
image, your procedure fills the buffer associated with the pointer and then
calls theimp...() procedure.

 Example2.12 is a simple example of copying one image into another
using arbitrary line I/O.

Example 2.12: Copying Images Using Arbitrary line I/O.

IMCOPY -- Copy a 2-D image. The header information is preserved.
The output image has the same size and pixel type as the input image.
An image section may be used to copy a subsection of the input image.

procedure imcopy (in_image, out_image)

char in_image[ARB]
char out_image[ARB]

int npix, nlin
int line
pointer in, out, l1, l2
pointer immap(), imgl2r(), impl2r

begin
Open the input image.
in = immap (in_image, READ_ONLY, O)

Open the output image as a copy of the input
out = immap (out_image, NEW_COPY, in)

Fine the line size
npix = IM_LEN(in,1)
nline = IM_LEN(in,2)

do line = 1, nlin
Copy the image line
call amovr (Memr[(imgl2r (in, line)],

Memr[impl2r (out, line)], npix)

Close the images
call imunmap (in)
call imunmap (out)

end

Accessing Images — imio 65

Line by Line I/O
Another family of procedures returns a pointer to a line of an image,

progressing through adjacent lines with each successive call. These differ
from the previous family in that those allow a particular line to be read in
random order. These procedures return the next line in order.

Table 2.12: Line by Line I/O.

This family of procedures is implemented for the usual SPP numeric
data types:short, int, long, real, double, andcomplex. The
functions return the buffer pointer in an argument,bufptr, not in the
function value as the previous procedures. These procedures return a
completion status as the function value which may be tested forEOF. The
argumentv is along array containing indexes of the line to read. This
should be initialized to ones. After each call toimgnlT() it is updated to
contain the index of the next line. See the example below.

This family of procedures is useful for operating on an image line by
line, without regard for the absolute size or even the dimensionality of the
image. Because of the buffering of image input and output and a certain
amount of asynchronous I/O, substantially more efficient code can result.
Example2.13 demonstrates line by line image I/O by copying an image to
a new image. Note that the procedure works the same regardless of the
dimensionality and data type of the images. Another, more complete
example, can be found in Appendix B.

Procedure Call Purpose

status = imgnlT (im, bufptr, v) Get next image line

66 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.13: Line by Line Image I/O.

General Sections
These procedures return a pointer to dynamically allocated memory

containing the pixels from an arbitrary section of an image. Note the
difference from line-by-line I/O, in which the returned memory always
represents a single line of an image, regardless of the dimensionality. These
procedures may return a multi-dimensional section.

IMCOPY -- Copy an image. The header information is preserved.
The output image has the same size, dimensionality, and pixel
type as the input image.

procedure imcopy (in_image, out_image)

char in_image[ARB]
char out_image[ARB]

int npix
long one_l
long v1[IM_MAXDIM], v2[IM_MAXDIM]
pointer in, out, l1, l2
pointer immap(), imgnlr(), impnlr()

begin
Open the input image.
in = immap (in_image, READ_ONLY, 0)

Open the output image as a copy of the input
out = immap (out_image, NEW_COPY, in)

one_l = 1

Initialize position vectors to
line 1, column 1, band 1 ...
call amovkl (one_l, v1, IM_MAXDIM)
call amovkl (one_l, v2, IM_MAXDIM)

Find the line size
npix = IM_LEN(in,1)

while (imgnlr (in, l1, v1) != EOF &&
impnlr (out, l2, v2) != EOF)
Copy the image.
call amovr (Memr[l1], Memr[l2], npix)

Close the images
call imunmap (in)
call imunmap (out)

end

Accessing Images — imio 67

Table 2.13: Image Section Memory I/O Functions.

All of the above procedures are implemented for the usual SPP numeric
data types: short, int, long, real, double, and complex.
imggsT() differs from the other procedures in that the same arguments
may be used for images of any dimension. The vectors vs and ve describe
the range of elements in the section.

Procedure Call Purpose

bpt = imgs1T (imp, x1, x2) Get a section of a 1-D image

bpt = imgs2T (imp, x1, x2, y1, y2) Get a section of a 2-D image

bpt = imgs3T (imp, x1, x2, y1, y2, z1, z2) Get a section of a 3-D image

bpt = imps1T (imp, x1, x2) Put a section of a 1-D image

bpt = imps2T (imp, x1, x2, y1, y2) Put a section of a 2-D image

bpt = imps3T (imp, x1, x2, y1, y2, z1, z2) Put a section of a 3-D image

bpt = imggsT (imp, vs, ve, ndim) Get a general section

68 Chapter 2: Libraries and Packages: The VOS Interface

Miscellaneous Procedures
There are a few additional procedures providing miscellaneous

capabilities.

Table 2.14: Miscellaneous Image I/O Functions.

The last three procedures parse a fully qualified image filename into its
components. The termsimage, section, and cluster refer to separate
fragments of a fully qualified image name. The image section is a string
enclosed by square brackets specifying some subraster of an image, for
example, [100:125,200:450]. The image name is the filename and
group member number (applicable to STF images) without the image
section, and the cluster is the filename only. Example2.14 should clarify
this nomenclature. Image sections will be explained in greater detail (See
“Image Sections” on page74.)

Function Call Purpose

imflush (imp) Flush the output buffer

imaccess (image, acmode) Test availability of image

imcopy (input, output) Copy images (does not
work on OIF files)

imdelete (image) Delete the image

imrename (oldname, newname) Rename the image

imgsection (imagef, section, maxch) Get the image section field

imgimage (imspec, image, maxch) Get the image name

imgcluster (imspec, cluster, maxch) Get the cluster name

Accessing Images — imio 69

Example 2.14: Using Image Section Syntax.

Note thatimacces() tests only whether an image name is valid, not if
the image exists. However, if the image includes an image section, then
imacces() will test for its existence.

Header Parameters
Image headers describe the format of an image and permit arbitrary

parameters to be carried with the pixel data. The image database interface
is theimio interface to the database containing the image headers. The first,
fixed format, part of the image header contains the standard fields in binary
and is fixed in size. This is followed by theuser area, a string buffer
containing a sequence of variable length, newline delimited FITS format
keyword=value header cards. When an image is opened a large user area is
allocated to permit the addition of new parameters without filling up the
buffer. When the header is subsequently updated on disk only as much disk
space is used as is needed to store the actual header.

include <imhdr.h>

pointer im
char imspec[SZ_FNAME], image[SZ_FNAME], image_clus[SZ_FNAME]
pointer immap()

begin
call strcpy ("w00xh902t.c0h[1/125[100:125,200:450]",

imspec, SZ_FNAME

Extract the image name
call imgimage (imspec, image, SZ_FNAME)

The image string will have "w00xh902t.c0h[1/125]"

Extract the cluster name
call imgcluster (imspec, image_clust, SZ_FNAME)

The image_clus string will contain: "w00xh902t.c0h"

im = immap (imspec, READ_ONLY, 0)

To get the values 1 and 125 in the string "[1/125]"
use the following macros (after opening the image
as above).

cl_index = IM_CLINDEX(im) # value 1
cl_size = IM_CLSIZE(im) # value 125

70 Chapter 2: Libraries and Packages: The VOS Interface

 Images comprise keyword parameters in an image header in addition to
the pixel values. These header keywords describe the fundamental
properties of the image such as its size and data type. In addition, they
represent other pertinent information such as the instrument, date, world
coordinate transformation, or any other data thought useful by the
originator of the data. See “Standard Fields” on page72 for an explanation
of the standard parameters available for every image.

Table 2.15: Image Header Parameter Functions.

In each procedure, the name of the parameter is specified as a character
string (keyword here), sometimes referred to as afield. The procedures
imgetT(), imputT(), andimaddT() are implemented for the SPP
data typesbool, char, short, int, long, real, anddouble. The
argument imp is a pointer type reference to the image returned by
immap().

New parameters will typically be added to the image header with either
one of the typedimadd() procedures or with the lower levelimaddf()
procedure. The former procedures permit the parameter to be created and
the value initialized all in one call, while the latter only creates the
parameter. In addition, the typedimadd() procedures may be used to
update the values of existing parameters, i.e., it is not considered an error if
the parameter already exists. The principal limitation of the typed

Procedure Call Purpose

value = imgetT (imp, keyword) Get a header parameter

imgstr (imp, keyword, outstr, maxch) Get a string parameter

imputT (imp, keyword, value) Put a header parameter

impstr (imp, keyword, value) Put a string parameter

imaddT (imp, keyword, default) Add a header parameter

imastr (imp, keyword, default) Add a string parameter

imaddf (imp, keyword, default) Add a keyword with no value

imdelf (imp, keyword) Delete a parameter

istat = imaccf (imp, keyword) Test if parameter exists

itype = imgftype (imp, keyword) Return datatype of parameter

Accessing Images — imio 71

procedures is that they may only be used to add or set parameters of a
standard data type.

The value of any parameter may be fetched with one of theimgetT()
functions. Be careful not to confuseimgets() with imgstr() (or
imputs() with impstr()) when fetching or storing the string value of
a field. Fully automatic type conversion is provided. Any field may be read
or written as a string, and the usual type conversions are permitted for the
numeric data types.

The imaccf() function may be used to determine whether a field
exists. Fields are deleted with imdelf(). It is an error to attempt to
delete a nonexistent field. The following example (Example2.15)
illustrates handling of image header parameters. The character string field
can take the name of any existing keyword in the image header, e.g.,
DATE_OBS ori_naxis1.

Example 2.15: Handling Image Header Parameters.

Get the value of datatype and value of existing keywords
and append new keywords to the image header with those values.

switch (imgftype (im, field)) {
case TY_BOOL:

if (imgetb (im, field))
O_VALB(o) = true

else
O_VALB(o) = false

call strcpy ("NEW_BKY", nfield, SZ_KEYWORD)
call imaddb (im, nfield, O_VALB(o))

case TY_CHAR:
call imgstr (im, field, O_VALC(o), SZ_LINE)
call strcpy ("NEW_SKY", nfield, SZ_KEYWORD)
call imastr (im, nfield, O_VALI(o))

case TY_ING:
O_VALI(o) = imgeti (im, field)
call strcpy ("NEW_IKY", nfield, SZ_KEYWORD)
call imaddi (im, nfield, O_VALI(o))

case TY_REAL:
O_VALR(o) = imgetr (im, field)
call strcpy ("NEW_RKY", nfield, SZ_KEYWORD)
call imaddr (im, nfield, O_VALR(o))

default:
call error (1, "unknown expression datatype")

}

72 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.16: Image File I/O Functions Handling Templates.

The field name list proceduresimofnl[su](), imgnfn(), and
imcfnl() procedures are similar to the fio file template facilities, except
that the@file notation is not supported. The template is expanded upon
an image header rather than a directory. Unsorted lists are the most useful
for image header fields. If sorting is enabled each comma delimited pattern
in the template is sorted separately, rather than globally sorting the entire
template after expansion. Minimum match is permitted when expanding
the template, another difference from file templates. Only actual, full
length field names are placed in the output list.

Standard Fields
The imio database interface, described above, may be used to access

any field of the image header, including thestandard fields shown in
Table2.17, existing for every image. In addition, there may be other
parameters unique to the particular image.

Procedure Call Purpose

list = imofnls (imp, template) Open a sorted file template

list = imofnlu (imp, template) Open unsorted file template

nchars = imgnfn (list, fieldname, maxch) Get next filename

imcfnl (list) Close template

Accessing Images — imio 73

Table 2.17: Standard Header Keywords.

The names of the standard fields share ani_ prefix to reduce the
possibility of collisions with user field names, to identify the standard fields
in sorted listings, to allow use of pattern matching to discriminate between
the standard fields and user fields, and so on. Thei_ prefix may be omitted
provided the resultant name does not match the name of a user parameter. It
is however recommended that the full name be used in all applications
software.

You will need to use the include file<imhdr.h> when dealing with
image headers. This defines macros for standard image header parameters
dealing with fundamental characteristics of the image such as the size, data
type, etc. Several header parameters are available via theimio structure
defined by<imhdr.h>. Others may be accessed through theimio
database procedures. Parameters may be read or written. If a parameter
does not exist, it must be created. Example2.16 is a fragment of code that
finds the size of the image, the number of pixels per line and the number of
lines. Since the keyword values in Table 2.17 are accessible through the
<imhdr.h> structure, they can be used to get keyword values from an
image using thehedit task.

Keyword Type Declaration

i_ctime long Time of image creation

i_history string History string buffer

i_limtime long Time when limits (minmax) were last
updated

i_maxpixval real Maximum pixel value

i_minpixval real Minimum pixel value

i_mtime long Time of last modify

i_naxis int Number of axes (dimensionality)

i_naxisN long Length of axis n (i_naxis1, etc.)

i_pixfile string Pixel storage filename

i_pixtype int Pixel datatype (SPP integer code)

i_title string Title string

74 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.16: Using Header Parameters.

Image Sections
A fundamental feature ofimio is the capability to treat a subset of an

image identically to an entire image. The image filename as passed to
immap() may include animage section which specifies what part of the
image to read. The image section facility greatly increases the flexibility of
the imio interface. Image sections are specified as part of the image name
input toimmap(), and are not visible to the applications program, which
sees a somewhat smaller image, or an image of lesser dimensionality.
Some examples are shown below. In addition, see “World Coordinates —
mwcs” on page129 describing themwcs world coordinate system library.

include <imhdr.h>
char image[SZ_FNAME]
pointer im
int npts, nrow
pointer immap()
begin

Open the image
im = immap (image, READ_ONLY, 0)
Find the image size
npts = IM_LEN(im,1)
nrow = IM_LEN(im,2)
.
.

end

Accessing Images — imio 75

Table 2.18: Image Section Syntax.

Image Name Templates
 The filename template package of procedures permits the use of

wildcards or nested lists of image filenames. The functionality and calling
sequences are similar to those of thefio filename template package (see
“Filename Templates” on page101).

An image template is expanded into a list of image names or image
sections withimtopen(). The list is not globally sorted, however
sublists generated by pattern matching are sorted before appending the
sublist to the final list. The number of images or image sections in a list is
given by imtlen(). Images are read sequentially from the list with
imtgetim(), which returnsEOF when the end of the list is reached. The
list may be rewound withimtrew(). An image template list should be
closed withimtclose() to return the buffers used to store the list and its
descriptor.

Section Refers to...

pix[] The whole image

pix[i,j] The single pixel value (scalar) at [i,j]

pix[*.*] The whole image, two dimensions

pix[*,-*] Flip Y-axis

pix[*,*,b] B and B of 3-D image

pix[*,*:s] Subsample in Y by S

pix[*,1] Line l of image

pix[c,*] Column c of image

pix[i1:i2,j1:j2] Subraster of image

pix[i1:i2:sx,j1:j2:sy] Subraster with sampling

76 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.19: Image Template Functions.

Note that theint function imgetim() returnsEOF upon attempting
to read at the end of file. Otherwise, it returns the number of characters in
the image name.

 Example2.17 is the top level procedure for the IRAF
images.imcopy task in images$imutil/t_imcopy.x. It
demonstrates handling image name templates. Some comments have been
added to clarify the code.

Example 2.17: Handling Image Name Templates.

Procedure Call Purpose

list = imtopen (template) Open image template

nimages = imtlen (list) Return number of images

imtrew (list) Rewind template list

nchars = imtgetim (list, fname, maxch) Get next image name

imtclose (list) Close template

include <imhdr.h>

IMCOPY -- Copy image(s)
The input images are given by an image template list.
The output is either a matching list of images or a directory.
The number of input images may be either one or match the number
of output images. Image sections are allowed in the input
images and are ignored in the output images. If the input and
output image names are the same then the copy is performed to a
temporary file which then replaces the input image.

procedure t_imcopy()

char imtlist1[SZ_LINE] # Input image list
char imtlist2[SZ_LINE] # Output image list
bool verbose # Print operations?

char image1[SZ_PATHNAME] # Input image name
char image2[SZ_PATHNAME] # Output image name
char dirname1[SZ_PATHNAME] # Directory name
char dirname2[SZ_PATHNAME] # Directory name
int list1, list2, root_len

int imtopen(), imtgetim(), imtlen()
int fnldir(), isdirectory()
bool clgetb() (Continued...)

Accessing Images — imio 77

Example 2.17 (Continued): Handling Image Name Templates.

begin
Get input and output image template lists.

Get the input image template from the task parameter "input",
for example: input = "*.imh", input = "im1.imh,im2.imh,w0*.c0h"

call clgstr ("input', imtlist1, SZ_LINE)

Get the output image template from the task parameter "output",
for example: output = $home/data/ or output = cimf.imh

call clgstr ("output", imtlist2, SZ_LINE)
verbose = clgetb ("verbose")

Check if output string is a directory
if (isdirectory (imtlist2, dirname2, SZ_PATHNAME)> 0) {

When output = "$home/data/" then isdirectory is > 0
and dirname2 will have the output string.
list1 = imtopen (imtlist1)
while (imtgetim (list1, image1, SZ_PATHNAME)!= EOF) {

imtopen will return a pointer to a list of f iles and
each occurrence of imgetim will put an image name in image1

Strip the image section f irst because fnldir
recognizes it as part of a directory. Place
the input image name without a directory or
image section in string dirname1
call get_root (image1, image2, SZ_PATHNAME)
root_len = fnldir (image2, dirname1, SZ_PATHNAME)
call strcpy (image2[root_len+1], dirname1, SZ_PATHNAME)
call strcpy (dirname2, image2, SZ_PATHNAME)
call strcat (dirname1, image2, SZ_PATHNAME)
call img_imcopy (image1, image2, verbose)

}
call imtclose (list1)

} else {
Expand the input and output image lists
list1 = imtopen (imtlist1)
list2 = imtopen (imtlist2)
if (imtlen (list1) != imtlen (list2)) {

call imtclose (list1)
call imtclose (list2)
call error (0, "Number of ... images not the same")

}
Do each set of input/output images
while ((imtgetime (list1, image1, SZ_PATHNAME)!= EOF) &&

(imtgetim (list2, image2, SZ_PATHNAME)!= EOF)) {
call img_imcopy (image1, image2, verbose)

}
call imtclose (list1)
call imtclose (list2)

}
end

78 Chapter 2: Libraries and Packages: The VOS Interface

2.4 Formatted I/O — fmtio

SPP includes complete facilities for formatting numeric and text data for
input, output, and internal use.

printf and its relatives
Text and binary numbers formatted as text may be directed to the

standard output (STDOUT), the standard error stream (STDERR), a text file,
or a string. Note thatSTDOUT may be redirected to a file or piped to
another task in the IRAF cl. Binary values may be formatted via a format
specification string. The values to format must be passed in separate
procedure calls. Theprintf() family of procedures performs formatted
output. These are similar to the C<stdio> library procedures except that
the values to format are not included in the calling sequence because SPP
(Fortran) does not handle variable numbers of calling arguments in a
portable manner.

Table 2.20: Formatted Output Functions.

The values to format and print are passed viapargT() procedures.
There is a separate procedure for each of the SPP data types:bool, char,
short, int, long, real, double, andcomplex. For example, for
numerical values,pargr() is used for floating point,pargi() for
integer, while pargstr() would be used for strings. Note that the data
type specified by the name of the procedure represents the data type of the
parameter passed to the format, not the format itself. In general, any SPP

Procedure Call Purpose

printf (format) Formatted print toSTDOUT

eprintf (format) Formatted print toSTDERR

fprintf (fd, format) Formatted print to any open file

sprintf (outstr, maxch, format) Formatted print to a string buffer

clprintf (param, format) Formatted print to a cl parameter

pargT (value) Pass a numeric argument to aprintf()

pargstr (value) Pass string argument to aprintf()

Formatted I/O — fmtio 79

data type variable may be formatted by anyprintf() format
specification.

Format Codes
A format specification is a string that describes how values are to be

represented in the output. The string may include any text, but fields may
be included to format values. These fields have the form%w.dCn. Any text
not preceded by a percent character will be written to the output
unchanged. The percent character is a required part of the format field and
the remainder of the word specifies the form of the output.w is the field
width, d is the number of decimal places or the number of digits of
precision,C is the format code, andn is radix character (for format coder
only). Thew andd fields are optional. The string may be a literal, a string
variable, or a predefined parameter constant. Therefore, run-time formats
are possible. The format codesC are shown in Table 2.21.

80 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.21: Output Format Codes.

Code Format

b Boolean, true or false (yes orno only on output)

c Single character, c or\c or\Onnn

d Decimal integer

e Exponential, d specifies the precision

f Fixed format, d specifies the number of decimal places

g General format, d specifies the precision

h Sexagesimal, hh:mm:ss.ss, d is the number of decimal places

m Minutes, seconds (or hours, minutes), mm:ss.ss

o Octal integer

rn Convert integer in any radix n

s String,d field specifies max chars to print

t Advance to column given as field w

u Unsigned decimal integer

w Output the number of spaces given by field w

x Hexadecimal integer

z Complex format(r,r), d specifies the precision

Formatted I/O — fmtio 81

The conventions for thew (field width) specification are as follows:

Table 2.22: Field Width Specifications.

Escape sequences (e.g.,\n for newline) are replaced by the appropriate
character value on output:

Table 2.23: Escape Sequences.

Note that a newline is not automatically written for everyprintf()
call, as with a FortranWRITE. Use\n in the format text to explicitly write
a newline. (See Example2.18).

Code Effect

n Right justify in field of n characters, blank fill

-n Left justify in field of n characters, blank fill

On Zero fill at left, only if right justified

absent Use as much space as needed, d field sets precision

O Use as much space as needed, d field sets precision

Escape Replacement Character

\b Backspace

\f Form feed

\n Newline (LF)

\r Carriage return

\t Tab

\” String delimiter character

\’ Character constant delimiter character

\\ Backslash character

\ nnn Octal value of character

%% Insert a percent character in the output

82 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.18: Writing a Newline.

Additional Output Procedures
Substitutingeprintf() for printf() would write to the standard

error streamSTDERR instead of standard output. These two streams are
treated separately by the cl. To write to an arbitrary text file, use
fprintf(), specifying a file descriptor for an open text file, see
Example2.19.

Example 2.19: Writing an Arbitrary Text File.

Similarly, formatted text may be written to a text string variable using
sprintf(). This is particularly useful for error messages or runtime
formats, i.e., generating a format string to use in anotherprintf() call.
Note thatsprintf() includes an argument specifying the maximum size
of the output character string.

mean = 4027.123
sigma = 33.98423

call printf ("mean: %06g sigma: %6.2f\n")
call pargr (mean)
call pargr (sigma)

mean: 4027.12 sigma: 33.98

Output Produced...

.

.
char filename[SZ_FNAME] # Output text file name
int ival
real rval
int fd
int open()

begin
.
.
Open the output text file
fd = open (filename, NEW_FILE, TEXT_FILE)

Write formatted output
call fprintf (fd, "ival = %d, rval = %f\n")

call pargi (iv)
call pargr (rval)

.

.

Formatted I/O — fmtio 83

Example 2.20: Writing Output to a Text String Using sprintf() .

Formatted Input — scan , et. al.
Formatted input may be read from the standard input streamSTDIN, a

text file, a string variable, or a cl parameter using thescan family of
procedures. Each scan procedure returns an integer status as the function
value. This status will containEOF upon reading end of file.

Table 2.24: Formatted Input Functions.

Procedure Call Purpose

scan () Scan fromSTDIN

stat = fscan (fd) Scan from file opened asfd

stat = sscan (str) Scan from the stringstr

stat = clscan (param) Scan from the cl parameterparam

scanc (ch) Get the next character from a scan

reset_scan () Rescan same input

char f ilename[SZ_FNAME]
char outstr[SZ_LINE] # String taking formatted output
char fmtstr[SZ_LINE] # Format string
int ival
real rval
begin

Write formatted output
call sprintf (outstr, SZ_LINE, "ival = %d, rval = %f\n")

call pargi (ival)
call pargr (rval)

Write the string to output
call printf (outstr)
Write the output string
call sprintf (outstr, SZ_LINE, "Couldn’t open f ile %s\n")

call pargstr (f ilename)
call error (0, outstr)
Get a format string from the cl
call clgstr ("format", fmtstr, SZ_LINE)
call printf (fmtstr)

call pargi (ival)
.
.

84 Chapter 2: Libraries and Packages: The VOS Interface

Note that as with the output (printf() family) procedures, variables
are not changed by thescan() procedures. Values read are placed in
variables using thegargT() family of procedures.

Table 2.25: Input Functions.

There is a separategargT() procedure for each of the SPP data types:
bool, char, short, int, long, real, double, andcomplex. A
word, as recognized bygargwrd(), is any string separated by white
space.

Procedure Call Purpose

gargT (value) Get a typed argument

gargstr (outstr, maxch) Get rest of line

gargwrd (outstr, maxch) Get next “word”

gargrad (lval, radix) Non-decimalgargi()

gargtok (tok, outstr, maxch) Get next token

Formatted I/O — fmtio 85

Example 2.21: Formatting Output.

Internal Formatting
These procedures convert a string representation of a number into its

binary value. They perform the same function as thegarg...()
procedures, but do I/O internally. That is, they read from a character string
variable, not an input stream or file. Each function may be called
repeatedly to decode a string of values delimited by white space or
embedded in non-numeric characters.

define DATA_SIZE 1024

procedure getfield (xcoord, ycoord, npts)

Read 2 columns of numbers from STDIN to dynamically allocated
arrays passed back via pointers

pointer xcoord, ycoord # Coordinate arrays
int npts # Number of points
int row
char inline[SZ_LINE]
int getline()

begin
Default number of data values
npts = DATA_SIZE
Allocate the arrays
call malloc (xcoord, npts, TY_REAL)
call malloc (ycoord, npts, TY_REAL)
row = 0
while (getline (STDIN, inline) != EOF) {

row = row + 1 # Read an input file row
if (row > npts) {

npts = npts + DATA_SIZE # No room -- Allocate more scratch space
Reallocate space to save allocated memory
call realloc (xcoord, npts, TY_REAL)
call realloc (ycoord, npts, TY_REAL)

}
Put the values into the data arrays
call gargr (Memr[xcoord+row-1])
call gargr (Memr[ycoord+row-1])
}

 }
call sfree (sp)
npts = row
Resize data buffers to match amount of data read
call realloc (xcoord, npts, TY_REAL)
call realloc (ycoord, npts, TY_REAL)

end

86 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.26: Internal Formatting Functions.

There is a separatectoT() procedure for each of the SPP numeric data
types:int, long, real, double, andcomplex. All of the procedures
except ctotok() return the number of non-white input characters
converted as the integer function value.
ctotok() returns an integer code identifying the type oftoken

returned. Tokens represent the smallest substrings recognized in the string.
The values assigned to the token returned byctotok() are defined in the
include filectotok.h.

While ctowrd() nominally recognizeswords separated by white
space, any string enclosed in quotes is treated as a single word.

Thedtoc() format (see Table 2.27) is one of the characterse, f, g, h,
or m. See “Format Codes” on page79 for their meaning.

Procedure Call Purpose

nchar = ctoT (str, ip, value) Convert string to binary (there is
noctos()

nchar = cctoc (str, ip, char) char constant to char

nchar = gctod (str, ip, dval) Convert any number todouble

nchar = gctox (str, ip, xval) Convert any number tocomplex

nchar = gctol (str, ip, lval, radix) Variable radix

nchar = ctowrd (str, ip, outstr, maxch) Word or string

token = ctotok (str, ip, outstr, maxch) Extract token

Formatted I/O — fmtio 87

Example 2.22: Using Internal Formatting Functions.

Table 2.27: Conversion Functions.

Procedure Call Purpose

nchar = itoc (ival, outstr, maxch) int to char

nchar = ltoc (lval, outstr, maxch) long to char

nchar = ctocc (char, outstr, maxch) char to char constant

nchar = gltoc (lval, outstr, maxch, radix) Generic long

nchar = xtoc (xval, outstr, maxch, decpl,
 format, width)

complex to char

nchar = dtoc (dval, outstr, maxch, decpl,
 format, width)

double to char

procedure parse (instr, first, second, third)
Parse a string expected to contain three values, as:
"[1,2,3]" or "4 5 6"

char instr[ARB] # Input string
int first, second, third # Values in string
int ip
int nchar
int ctoi()

begin
ip = 1 # Initialize the string pointer
Read the first field
if (ctoi (instr, ip, first) == 0) {

Nothing there
first = INDEFI
return

}
Read 2nd field, The string pointer ip is just after 1st number
if (ctoi (instr, ip, second) == 0) {

Nothing there
second = INDEFI
return

}
Read last field
if (ctoi (instr, ip, third) == 0) {

Nothing there
third = INDEFI

}
end

88 Chapter 2: Libraries and Packages: The VOS Interface

Character and String Functions
SPP characters are implemented as integers. Character strings are

implemented as fixed length arrays of characters (integers) with the
element following the last character set to zero to indicate the end of the
string. Therefore they cannot be treated simply as scalar variables in
assignment statements. There is a family of procedures for assigning and
otherwise manipulating strings. Thechr...() family of functions
convert a single character (typechar) to upper or lower case. The
converted character is returned as the function value.

Table 2.28: Character Case Conversion Functions.

Note that there are macro definitions to accomplish the same purpose.
The macroTO_UPPER() converts a single character to upper case and
TO_LOWER() converts a character to lower case. However, these assume
that the character is already the appropriate case. These macros are defined
in <ctype.h>. Thestr...() family of procedures deal with character
strings (char arrays).

Table 2.29: Basic String Functions.

Note that strlen() returns the number of characters actually
occupying the string, not including the EOS character but including any

Procedure Call Purpose

ch = chrupr (ch) Change character to upper case

ch = chrlwr (ch) Change character to lower case

Procedure Call Purpose

nchar = gstrcat (str, outstr, maxch) Returns length of output string

strcat (str, outstr, maxch) Concatenatestr tooutstr

nchar = gstrcpy (from, to, maxch) Returns length of output string

strcpy (from, to, maxch) CopyEOS delim string

nchar = strlen (str) Length of string (excludingEOS)

strlwr (str) Convert string to lower case

strupr (str) Convert string to upper case

Formatted I/O — fmtio 89

blanks, not the declared size. This is different from the Fortranlen
function, which returns the declared size of a string, implicitly padded with
blanks to the declared size.

Table 2.30: String Index Functions.

Note that the argumentchar in stridx() andstrldx() is not a
string (a double quoted literal or char array) but an integer representing a
single character. If it’ s a literal, it should be insingle quotes. Otherwise, it
should be a scalarchar variable.

Table 2.31: Complex String Functions.

Note that macro expansion instrmac() is not recursive.

Procedure Call Purpose

index = stridx (char, str) First index of character in string

index = stridxs (set, str) Return the index of the first occurrence of
any of a set of characters in a string

index = strldx (char, str) Last index of character in string

index = strldxs (set, str) Return the index of the last occurrence of
any of a set of characters in a string

Procedure Call Purpose

index = strdic (instr, outstr,
 maxch, dict)

Search a dictionary string for a
match with an input string

nchar = strmac (macro, argstr,
 outstr, maxch)

Expand a macro by string
substitution

int = strsrt (x, sb, nstr) Sort a list of strings

strtbl (fd, buf, strp,
 nstr, first_col,last_col,
 maxch, ncol)

Print a list of strings.

90 Chapter 2: Libraries and Packages: The VOS Interface

String Comparisons

Table 2.32: String Comparison Functions.

The strcmp() procedure returns -n if s1 < s2, 0 if s1 = s2, and +n if
s1 > s2. The bool procedure strop() determines whether two strings
satisfy a logical operation. The function is selected by replacing op with an
operator from the list.

Procedure Call Purpose

index = strcmp (str1, str2) Compare two strings.

bool = strOP (s1, s2) Is s1 OP s2? (see below)

-1,0,1 = strncmp (s1, s2, n) Counted comparison

nextch = strsearch (str, patstr) Fast substring search

nextch = strmatch (str, patstr) Match strings using
metacharacters

nextch = gstrmatch (str, patstr,
 first, last)

Generalized pattern
matching

bool = streq (str1, str2) s1 == s 2

bool = strne (str1, str2) s1 != s 2

bool = strlt (str1, str2) s1< s 2

bool = strgt (str1, str2) s1> s 2

bool = strle (str1, str2) s1 <= s 2

bool = strge (str1, str2) s1 >= s 2

Formatted I/O — fmtio 91

For example, to test whether strings are equal, usestreq(). Pattern
matching characters ormetacharacters are defined in the include file
<pattern.h>:

Table 2.33: Pattern Matching Metacharacters.

Evaluating Expressions — evexpr

The evexpr() procedure is a function which takes an algebraic
expression as input, evaluates the expression, and returns the value of the
expression as the function value.

Table 2.34: Evaluating Expressions.

The input expression is a character string. It is parsed and reduced to a
single value. The operands to the expression may be either constants or
identifiers (strings). If an identifier is encountered the user supplied get

Procedure Metacharacter Purpose

CH_BOL ^ Beginning of line

CH_NOT ^ Not, in character classes

CH_EOL $ End of line symbol

CH_ANY ? Match any single character

CH_CLOSURE * Zero or more occurrences

CH_CCL [Begin character class

CH_CCLEND] End character class

CH_RANGE - Range, as in [a-z]

CH_ESCAPE \\ Escape character

CH_WHITESPACE # Match optional white space

CH_IGNORECASE { Begin ignoring case

CH_MATCHCASE } Begin checking case

Procedure Call Purpose

opt = evexpr (expr, getop_epa, ufcn_epa) Evaluate expression

92 Chapter 2: Libraries and Packages: The VOS Interface

operand procedure is called to return the value of the operand. Operands
are described by the operand structure, and operands are passed about by a
pointer to such a structure. The value of the expression is returned as a
pointer to an operand structure containing the function value. Operands of
different data types may be mixed in an expression with the usual
automatic type coercion rules. All SPP data types are supported including
strings (char arrays). All SPP operators and intrinsic functions are
recognized. (See “Intrinsic Functions” on page35).

Output is a pointer to an operand structure containing the computed
value of the expression. The output operand structure is dynamically
allocated byevexpr() and must be freed explicitly by the user with
mfree().

Note that the second and third arguments are theint entry point
addresses of procedures. The functionlocpr() is used to return the
address of a function. If there is no function supplied, useNULL for the
address. A generic example is:

op = evexpr (expr, locpr(getop), locpr(ufcn))

with the user-supplied procedures having the calling sequences shown in
Table 2.35:

Table 2.35: Calling User-Supplied Procedures.

If a syntax error occurs while parsing the expressionevexpr() will
take the error actionsyntax error. TheNULL arguments could be replaced
by thelocpr() addresses of get operand and/or user function procedures
if required by the application.

The lexical form of the input expression is the same as that of SPP and
the cl for all numeric, character, and string constants and operators. Any
other sequence of characters is considered an identifier and will be passed
to the user supplied get operand function to be turned into an operand.

This procedure requires the include file<evexpr.h> that defines the
operand structure. The operand structure is used to represent all operands
in expressions and on the parser stack. Operands are passed to and from the
outside world by means of a pointer to an operand structure. The caller is

Procedure Call Purpose

getop (identifier, op) Return named operand’s value

ufcn (fcn, args, nargs, op) Return named function’s value

Formatted I/O — fmtio 93

responsible for string storage of string operands passed toevexpr().
evexpr() manages string storage for temporary string operands created
during expression evaluation, as well as storage for the final string value if
the expression is string valued. In the latter case the value string should be
used beforeevexpr() is called again.

Table 2.36: Evaluating Procedure Data Types.

 The following simple example (Example2.23) evaluates a constant
expression and prints the value on the standard output. An only slightly
more complicated example (Example2.24) uses the procedureget_op()
to return an operand value.

Example 2.23: Evaluating Data Types.

Calling Procedure Returned Data Type

O_TYPE(op) Operand data type

O_VALB(op) Boolean value

O_VALI(op) Integer value (or string pointer)

O_VALR(op) Real value

O_VALC(op) String value

include <evexpr.h>
pointer op, evexpr()

begin
Evaluate an expression
op = evexpr ("sin(.5)**2 + cos(.5)**2)", NULL, NULL)

Print the result of the operation
switch (O_TYPE(op)) {
case TY_INT:

call printf ("result = %d\n")
call pargi (O_VALI(op))

case TY_REAL:
call printf ("result = %g\n")

call pargr (O_VALR(op))
case TY_CHAR:

call printf ("result = %s\n")
call pargstr (O_VALC(op))

}

Free the operand structure memory
call mfree (op, TY_STRUCT)

94 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.24: Returning Operand Value.

include <evexpr.h>

real procedure evalu8 (expr)

pointer igps
char expr[ARB]
pointer op
int npts
extern get_op()
pointer evexpr()
int locpr()

begin
op = evexpr (expr, locpr(get_op), 0) # Evaluate expression
switch (O_TYPE(op)) {
case TY_REAL:

return (LOP_VALR(op))
case TY_INT:

return (LOP_VALI(op))
}
call mfree (op, TY_STRUCT)

end

procedure get_op (operand, op)

Assigns value to expression operand. Allowed operands are x and y.
Values are taken from the common /evopcom/.

char operand[ARB] # operand name
pointer op # operand (output)
common /evopcom/ x, y

begin
Set up operand structure (zero length ==> scalar)
call xev_initop (op, O, TY_REAL)
switch (operand[1]) {
case ’x’, ’X’: # Allow either case operand

LOP_VALR(op) = x # Assign a real-valued operand
case ’y’, ’Y’:

LOP_VALR(op) = y
}
Free operand structure memory
call mfree (op, TY_STRUCT)

end

File I/O — fio 95

2.5 File I/O — fio

 File I/O takes place using astream, that is, an I/O channel available to
the SPP program. The standard streams, referred to asSTDIN, STDOUT,
andSTDERR (macros for integer values specifying a stream), are always
open. That is, you need not callopen() to access them.STDIN and
STDOUT read from and write to the user terminal when working
interactively but may be redirected or piped.STDERR is for warning or
error messages. The fio library permits input from and output to binary or
text files.

Before any I/O can be done on a file, the file must be opened. The
open() procedure may be used to access ordinary files containing either
text or binary data. To access a file on one of the special devices such as
magnetic tape, a special open procedure must be used. To conserve
resources (file descriptors, buffer space) a file should be closed when no
longer needed. Any file buffers that may have been created and written into
will be flushed before being deallocated.close() ignores any attempts to
closeSTDIN. Attempts to closeSTDOUT, orSTDERR cause the respective
output byte stream to be flushed, but are otherwise ignored. An error results
if one attempts to close a file that is not open. File I/O functions are listed in
Table 2.37; if you are working with binary data, Table2.42, “Binary File
I/O Functions.,” on page98 lists additional functions.

Table 2.37: File I/O Functions.

Procedure Call Purpose

fd = open (fname, mode, type) Open or create a text or binary file

close (fd) Close a file

flush (fd) Flush any buffered output to a file

seek (fd, loffset) Set the file offset of the next char to be
read or written

long = note (fd) Note the position in file for later seek

96 Chapter 2: Libraries and Packages: The VOS Interface

The access modes (the mode argument toopen()) are:

Table 2.38: File Access Modes.

The file types (thetype argument toopen()) are:

Table 2.39: File Types.

Access Mode Definition

READ_ONLY Read-only from an existing file

WRITE_ONLY Write-only to an existing file

READ_WRITE Read from or write to an existing file

APPEND Write to the end of an existing file

NEW_FILE Create a new file

TEMP_FILE Temporary file; delete upon task completion

File Type Definition

TEXT_FILE File of lines of text

BINARY_FILE Buffered binary byte stream

SPOOL_FILE In-memory “file”

File I/O — fio 97

Table 2.40: File Manipulation Commands

 In the above procedures, the common calling sequence variables are
declared as follows:

Table 2.41: File Variables.

Any file may be accessed after specifying only the filename, access
mode, and file type parameters using theopen() call. Occasionally,
however, it is desirable to change the default file control parameters, to
optimize I/O to the file. Thefset() procedure is used to set the FIO
parameters for a particular file, whilefget() is used to inspect the values
of these parameters. The special valueDEFAULT will restore the default

Procedure Call Purpose

fseti (fd, param, value) Set integer fio options

value = fstati (fd, param) Get the value of an integer fio parameter

value = fstatl (fd, param) Get value of a long integer fio parameter

fstats (fd, param, outstr, maxch) Get a string valued fio parameter

stat = finfo (fname, ostruct) Get directory information on a file

stat = access (fname, mode, type) Determine the type or accessibility of a file

delete (fname) Delete a file

rename (old_fname, new_fname) Change the name of a file

mktemp (root, fname, maxchars) Make a unique temporary filename

falloc (fname, nchars) Preallocate file space

stat = protect (fname, action) Protect a file from deletion

fcopy (from_fname, to_fname) Copy a file

fcopyo (from_fd, to_fd) Copy open files

Variable Name Contents

int fd File descriptor

char fname[SZ_FNAME] Filename string

98 Chapter 2: Libraries and Packages: The VOS Interface

value of the indicated parameter. The procedureseek() is used to move
the file pointer (offset in a file at which the next data transfer will occur).
With text files, one can only seek to the start of a line, the position of which
must have been determined by a prior call tonote(). For binary files,
seek() merely sets the logical offset within the file. The logical offset is
the character offset in the file at which the next I/O transfer will occur. In
general, there is no simple relationship between the logical offset and the
actual physical offset in the file.

Binary File I/O
The minimum size addressable SPP data item is a character, usually

implemented as ashort (two byte) integer. Therefore, in binary file I/O,
the size of the buffer is specified in units ofchars, or shorts. It is
possible to pack bit and byte data intochars. See theosb procedures
described in “Bit & Byte Operations — osb” on page123.

Table 2.42: Binary File I/O Functions.

Theread() procedure reads a maximum ofnch characters from the
file with descriptorfd into the user supplied memory buffer. The following
example (Example2.25) illustrates reading a binary file and extracting
values. This is a straightforward example because all of the desired values
are short integers at the beginning of the file.

Procedure call Purpose

stat = read (fd, buffer, nch) Read a binary block of data from a file

write (fd, buffer, nch) Write a binary block of data to a file

File I/O — fio 99

Example 2.25: Reading Values From a Binary File.

The next slightly more complicated example () demonstrates extracting
individual bytes from a binary file. The fragment of code reads a single
word consisting of four bytes and assigns the individual byte values to
separate short integers using theosb bytmov() procedure.

Example 2.26: Extracting Bytes From a Binary File.

procedure alghead (alfn, nx, xoff, yoff, nbit)

ALGHEAD -- Read header parameters from binary alias file. These
are width & height of image, offsets in x & y, and number bits/pixel.

char alfn[ARB] # Alias file name
pointer al # File descriptor
int nx, ny # Image size
int xoff, yoff # Offsets

int nbit # Bits per pixel
pointer al # Alias file descriptor
short sval[5] # Header

begin
Open the binary input alias file
al = open (alfn, READ_ONLY, BINARY_FILE)

Read the 5 (short) word header

status = read (al, sval, 5)
Parse header
nx = sval[1]
ny = sval[2]
xoff = sval[3]
yoff = sval[4]
nbit = sval[5]

end

int status # Return status

Read a word from the Alias file
status = read (al, albuf, 2)
run = 0 # Run length
call bytmov (albuf, 1, run, 4, 1)
The color values
call bytmov (albuf, 4, rv, 2, 1)
call bytmov (albuf, 3, gv, 2, 1)
call bytmov (albuf, 2, bv, 2, 1)

100 Chapter 2: Libraries and Packages: The VOS Interface

Text Character I/O
The proceduresgetc() andputc() read and write character data, a

single character at a time.

Table 2.43: Text Character I/O Operations.

Note that getchar() and putchar() deal with STDIN and
STDOUT respectively so they don’t require a file descriptor. The other
procedures require a previous call toopen() or may specify one of the
standard streamsSTDIN, STDOUT, or STDERR. The newline character is
returned as part of a line read bygetline(). The maximum size of a line
(size of a line buffer) is set at compile time by the system wide constant
SZ_LINE. getline() reads at mostSZ_LINE characters. To read more
in one call, usegetlline() which includes an argument specifying how
many characters to read.

Pushback
Characters and strings (and even binary data) may bepushed back into

the input stream.ungetc() pushes a single character. Subsequent calls to
getc(), getline(), read(), etc. will read out the characters in the
order in which they were pushed (first in, first out). When all of the
pushback data have been read, reading resumes at the preceding file

Procedure Call Purpose

stat = getc (fd, char) Get achar from a file

putc (fd, char) Putchar to a file

putcc (fd, char) Handles unprintable characters

stat = getchar (char) Get char fromSTDIN

putchar (char) Put char toSTDOUT

stat = getline (fd, linebuf) Get a line of text

stat = getlline (fd, linebuf, maxch) Get a line of text

putline (fd, linebuf) Output a string tofd

File I/O — fio 101

position, which may either be in one of the primary buffers, or an earlier
state in the pushback buffer.

Table 2.44: Pushback Text Functions.

ungets() differs from ungetc() in that it pushes back whole
strings, in a last in, first out fashion.ungets() is used to implement
recursive macro expansions. The amount of recursion permitted may be
specified after the file is opened, and before any data are pushed back.
Recursion is limited by the size of the input pointer stack, and pushback
capacity by the size of the pushback buffer.

Filename Templates
The filename template package contains routines to expand a filename

template string into a list of filenames, and to access the individual
elements of the list. It is primarily a convenience for users to allow
wildcards in filenames and pointers to files containing lists of names. The
template is a list of filenames, patterns, or list filenames. The concatenation
operator (//) may be used within input list elements to form new output
filenames. String substitution may also be used to form new filenames.

A sample template string is:

alpha, *.x, data* // .pix, [a-m]*, @list_file

This template would be expanded as the filealpha, followed in
successive calls by all the files in the current directory whose names end in
.x, followed by all files whose names begin withdata with the extension
.pix appended, and so on. The@ character signifies a list file. That is, a
file containing regular filenames.

Procedure Call Purpose

ungetc (fd, char) Push back a char

ungetline (fd, string) Push back a string

unread (fd, buf, nchars) Push back binary data

102 Chapter 2: Libraries and Packages: The VOS Interface

String substitution uses the first string given for the template, expands
the template, and for each filename generated by the template, substitutes
the second string to generate a new filename. Some examples follow.

Table 2.45: String Substitution Characters.

The following procedures (with ab suffix) are the highest level and
most convenient to use.

Table 2.46: High-Level Template Functions.

Sample String Performs Function

*.%x%y Change the extension toy

*%%_abc%.imh Append_abc toroot

nite%1%2%.1024.imh Changenite1 tonite2

Procedure Call Purpose

fntopnb (template, sort) Expand template and open a
buffered filename list

status = fntgfnb (list, fname,
maxch)

Get next filename from buffered
list (sequential)

status = fntrfnb (list, index,
fname, maxch)

Get next filename from buffered
list (random)

fntclsb (list) Close buffered list

num = fntlenb (list) Get number of filenames in a
buffered list

fntrewb (list) Rewind the list

Vector (Array) Operators — vops 103

The remaining lower level routines expand a template on the fly and do
not permit sorting or determination of the length of the list.

Table 2.47: Low-Level Template Routines.

2.6 Vector (Array) Operators — vops

 The vector operator (vops) procedures implement common operators
for arrays of most supported SPP data types. They arehost-specific in the
sense that they may take advantage of specialized hardware and software
available on a particular system such as vector processors and vectorizing
compilers. This would substantially improve the performance of
computationally intensive tasks dealing with large arrays such as images.
Nevertheless, the interface to SPP (the calling sequence) is independent of
the underlying architecture.

Each section below describes a family ofvops operators related by
functionality. Each operator (procedure) is implemented with the same root
name and calling sequence for several data types. However, not all
operators are implemented (nor do they make sense) for every data type.
The tables list the root procedure name, implemented data types, calling
sequence, and description of the operation. All of the functions require an
int argument that specifies the number of elements in the passed vector or
vectors. If the procedure requires more than one vector, they are assumed
to have the same number of elements. In nearly every case, multiple array
arguments tovops procedures are also the same data type. A significant
exception isachtTT(), which converts a vector of one data type to
another vector of a different data type.

All vector operations may be performedin place. That is, the same array
may be used on input as well as output. An array passed to a vector
procedure need not be one-dimensional. In all cases, the vectors are treated
simply as contiguous words. Since there is assumed to be no functional

Procedure Call Purpose

fntopn (template) Open an unbuffered filename list

fntgfn (pp, outstr, maxch) Get next filename from
unbuffered list

fntcls (pp) Close unbuffered list

104 Chapter 2: Libraries and Packages: The VOS Interface

relationship among the pixel positions in the vectors, arrays of any
dimensionality may be passed. Only the total number of pixels in the array
need be passed to the vops procedure. Many procedures are implemented
for the case of two vectors or a vector and a scalar. In the latter case, the
procedure name has a k inserted before the last character (the initial of the
data type) and one argument must be a constant or scalar variable.

Arithmetic Operators
These procedures implement basic arithmetic operations. The binary

operators (add, subtract, multiply, and divide) include operations between
two vectors or between a vector and a scalar. In the former case, each
element of the output vector is the result of the operation on the
corresponding elements of the input vectors. In the second case, each
element of the output vector represents the result of the operation between
the corresponding element of the input vector and the same scalar.

Table 2.48: Arithmetic Functions.

Each of these procedures is implemented for the following data types:
short, int, long, real, double, and complex. To use the
appropriate data type, replace T with the representative of the data type

Procedure Call Purpose

anegT (a, b, npix) Negate a vector

aaddT (a, b, c, npix) Add two vectors

aaddkT (a, k, c, npix) Add a vector and a scalar

asubT (a, b, c, npix) Subtract two vectors

asubkT (a, k, c, npix) Subtract a scalar from a vector

amulT (a, b, c, npix) Multiply two vectors

amulkT (a, k, c, npix) Multiply a vector and a scalar

adivT (a, b, c, npix) Divide two vectors

adivkT (a, k, c, npix) Divide a vector by a scalar

advzT (a, b, c, npix, errfcn) Vector divide, detect divide by zero

bi ai=

ci ai bi+=

ci ai k+=

ci ai bi−=

ci ai k−=

ci aibi=

ci aik=

ci ai/ bi=

ci ai/ k=

ci ai/ bi=

Vector (Array) Operators — vops 105

name,amulr() or aaddki(), for example. Most of these are the first
character of the data type, except forcomplex, whose representative
character isx. The last procedure,advzT(), implements dividing vectors,
but upon dividing by zero it callserrfcn(), supplied by the application
as an external function.

Bitwise Boolean operators
These procedures perform boolean operations on integer arrays,

returning the same type result. The resulting vector is the result of the
boolean operation on each bit of each element of the arrays.

Table 2.49: Bitwise Boolean Operators.

All of the above procedures are implementedonly for the integer data
types:short, int, andlong.

Procedure Call Purpose

anotT (a, b, npiix) NOT of a vector

aandT (a, b, c, npix) AND of two vectors

aandkT (a, b, c, npix) AND of a vector and a scalar

aborT (a, b, c, npix) OR of two vectors

aborkT (a, b, c, npix) OR of a vector and a scalar

axorT (a, b, c, npix) XOR (exclusive or) of two vectors

axorkT (a, b, c, npix) XOR of a vector and a scalar

106 Chapter 2: Libraries and Packages: The VOS Interface

Logical Comparison
These procedures return anint array containing the result of the

logical comparison between elements of the input vectors. If the result of
the comparison istrue, the value in the vector is one, otherwise, it is zero.

Table 2.50: Logical Comparison Functions.

All of the above are implemented for the range of SPP data types:
char, short, int, long, real, double, and complex. Note,
however, that the output vector, c is always anint array.

Fundamental Array Operators
These procedures implement various basic array operations. The

achtTT() procedure is unique in that the input and output vectors are of
different data types. It requires two data type specifiers (t) for the input and
output vectors.

Procedure Call Purpose

abeqT (a, b, c, npix)

abeqkT (a, k, c, npix)

abgeT (a, b, c, npix)

abgekT (a, k, c, npix)

abgtT (a, b, c, npix)

abgtkT (a, k, c, npix)

ableT (a, b, c, npix)

ablekT (a, k, c, npix)

abltT (a, b, c, npix)

abltkT (a, k, c, npix)

abneT (a, b, c, npix)

abnekT (a, k, c, npix)

ai bi?=

ai k?=

ai bi?≥

ai k?≥

ai bik?>

ai k?>

ai bi?≤

ai k?≤

ai bi?<

ai k?<

ai bi?≠

ai k?≠

Vector (Array) Operators — vops 107

Table 2.51: Fundamental Array Operators.

All of the above are implemented for the full range of SPP data types:
char, short, int, long, real, double, and complex. In addition,
achTT() is implemented for unsigned byte b and unsigned short u types.
These are used primarily in low-level image I/O (imio) code. aclrT() is
also implemented for byte.

Function Data Type Parameters Purpose

amovT csilrdx (a, b, npix) Move (copy or shit) a vector

amovkT csilrdx (k, b, npix) Move a scalar into a vector

aclrT bcsilrdx (a, npix) Clear (zero) a vector

achtTT ubcsilrdx (a, b, npix) Change datatype of a vector

108 Chapter 2: Libraries and Packages: The VOS Interface

Algebraic Operators
These procedures implement various functions. The log and square root

functions include an external function passed to the procedure that sets the
returned value in the case of an invalid function result such as√-1.

Table 2.52: Algebraic Operators.

All of these procedures are implemented for the data types:short,
int, long, real, double, and complex, except the modulus
functions amodT() and amodkT(), which are not implemented for
complex.

Procedure Call Definition

aabsT (a, b, npix) Absolute value bi = |ai|

amodT (a, b, c, npix) Modulus of two vectors

amodkT (a, k, c, npix) Modulus of a vector and a scalar

apowT (a, b, c, npix) Vector to an integer vector power

apowkT (a, k, c, npix) Vector to an integer scalar power

aexpTt (a, b, c, npix) Vector to a real vector exponent

aexpkT (a, k, c, npix) Vector to a real scalar exponent

arcpT (a, k, c, npix) Reciprocal of a scalar and a vector

arczT (a, k, c, npix, errfcn) Reciprocal, detect divide by zero

allnT (a, b, npix, errfcn) Natural logarithm

alogT (a, b, npix, errfcn) Common logarithm

asqrT (a, b, npix, errfcn) Square root

amagT (a, b, c, npix) Magnitude of vectors

amgsT (a, b, c, npix) Magnitude squared of vectors

ci ai
bi=

ci ai
k=

ci ai
bi=

ci ai
k=

ci k/ai=

ci k/ai=

bi ln'�ai=

bi ailog=

bi ai=

ci ai
2 bi+() 1/2=

ci ai
2 bi

2+=

Vector (Array) Operators — vops 109

Complex Operators
These procedures involve complex operators, but involve not only

complex arguments.

Table 2.53: Complex Operators.

acjgT() is implemented only forcomplex arrays. The first
argument toaimgT() andaupxT() must be acomplex array. The last
argument toaupxT() must be acomplex array.

Procedure Data Type Arguments Function

acjgT x (a, b, npix) Complex conjugate of a
complex vector

aimgT silrd (a, b, npix) Imaginary part of a
complex vector

aupxT silrdx (a, b, c, npix) Unpack the real and
imaginary parts of a
complex vector

apkxT silrds (a, b, c, npix) Pack a complex vector
given the real and
imaginary parts

110 Chapter 2: Libraries and Packages: The VOS Interface

Fourier Transforms

Table 2.54: Fourier Transforms.

The transform may be performed in place. The size of the arrays must
be a power of two.

Procedure Arguments Transform Type

afftrr (sr, si, fr, fi, npix) Forward real Fourier transform,
real arrays

afftrx (a, b, npix) Forward real Fourier transform,
complex output

afftxr (sr, si, fr, fi, npix) Forward complex Fourier
transform, real arrays

afftxx (a, b, npix) Forward complex Fourier
transform, complex arrays

aiftrr (sr, si, fr, fi, npix) Inverse real Fourier transform,
real arrays

aiftrx (a, b, npix) Inverse real Fourier transform,
complex output

aiftxr (sr, si, fr, fi, npix) Inverse complex Fourier
transform, real arrays

aiftxx (a, b, npix) Inverse complex Fourier
transform, complex arrays

Vector (Array) Operators — vops 111

Transformations

Table 2.55: Transformations.

Function Data Types Parameters Purpose

agltT csilrdx (a, b, npix, low,high,
kmul, kadd, nrange)

General piecewise linear
transformation

altrT silrdx (a, b, npix, k1, k2,
k3)

Linear transformation of a vector

altaT silrdx (a, b, npix, k1, k2) Linear map vector to vector

altmT silrdx (a, b, npix, k1, k2) Linear map vector to vector

amapT silrd (, b, npix, a1, a2, b1,
b2)

Linear mapping of a vector with
clipping

aluiT silrd (a, b, x, npix) Vector lookup and interpolate
(linear)

alutT csil (a, b, nchar, lut) Vector transform via lookup table

bi ai ki+() k2×=

bi ai k1+() k2×=

bi aik1 k2+=

112 Chapter 2: Libraries and Packages: The VOS Interface

Miscellaneous Procedures

Table 2.56: Miscellaneous Procedures.

Function Data Type Parameters Purpose

aminT csilrdx (a, b, c, npix) Vector minimum of two vectors

aminkT csilrdx (a, b, c, npix) Vector minimum of a vector and a
scalar

amaxT csilrdx (a, b, c, npix) Vector maximum of two vectors

amaxkT csilrdx (a, b, c, npix) Vector maximum of a vector and a
scalar

amed3T csilrd (a, b, c, med, npix) Vector median of three vectors

amed4T csilrd (a, b, c, d, med, npix) Vector median of four vectors

amed5T csilrd (a, b, c, d, e, med, npix) Vector median of five vectors

arltT silrdx (a, npix, floor, newval) Vector replace pixel if < scalar

argtT silrdx (a, npix, ceil newval) Vector replace pixel if > scalar

aselT csilrdx (a, b, c, sel, npix) Vector select from two vectors
based on boolean flag vector

asokT csilrdx (a, npix, ksel) Selection of thekth smallest
element of a vector

acnvT silrd (a, b, npix, kernel, kpix) Convolve two vectors

acnvrT silrd (a, b, npix, kernel, kpix) Convolve a vector with a real
kernel

asrtT csilrdx (a, b, npix) Sort a vector in increasing order

abavT silrdx (a, b, nblocks, npix_block) Block average a vector

absuT silrd (a, b, nblocks, npix_block) Block sum a vector

awsuT silrdx (a, b, c, npix, k1, k2) Weighted sum of two vectors

ahgmT csilrd (a, npix, hgm, nbins, z1,
z2)

Accumulate the histogram of a
series of vectors

ci k1ai k2bi+=

Vector (Array) Operators — vops 113

Scalar Results
These procedures return a scalar value from computation upon a vector.

In most cases, the data type of the function, vector or vectors, and the
returned value must match. Exceptions arearavt() andawvgt(), in
which the returned value is the number of points remaining in the sample
after rejection.

Table 2.57: Scalar Results.

Procedure Call Data Types Parameters Purpose

hival = ahivT csilrdx (a, npix) Compute the high (max)
value of a vector

loval = alovT csilrdx (a, npix) Compute the low (min)
value of a vector

alimT csilrdx (a, npix, minval,
maxval)

Compute the limits (min
and max) of a vector

dot = adotT silrdx (a, b, npix) Dot product of two vectors

aavgT silrdx (a, npix, mean,
sigma)

Mean and standard
deviation of a vector

ngpix = aravT silrdx (a, npix, mean,
sigma, ksig)

Mean and standard
deviation of a vector with
pixel rejection (mean and
sigma are floating point)

ngpix = awvgT silrdx (a, npix, mean,
sigma, lcut, hcut)

Mean and standard
deviation of a windowed
vector (mean, sigma, lcut
and hcut are floating point)

med = amedT csilrdx (a, npix) Median value of a vector

ssqrs = assqT silrdx (a, npix) Sum of squares of a vector
 (returns floating

point results)

sum = asumT silrdx (a, npix) Sum of a vector
(returns floating point
results)

y = apolT rd (x, coeff, ncoeff) Polynomial evaluation

aibi∑

ai
2∑

ai∑

aix
i 1−∑

114 Chapter 2: Libraries and Packages: The VOS Interface

2.7 Vector Graphics — gio

The gio package allows an IRAF application written in SPP to draw
graphics without regard to the ultimate plotting device. There is a complete
description in the documentGraphics I/O Design [Tody84b] available
using thehelp command in the cl:help gio$doc/gio.hlp fi+.
Here we primarily list the procedures, their calling sequences and a brief
description of their function. Thegio library allows a task to draw graphics
with relatively little regard for specific graphics hardware. Nevertheless,
some features are rather dependent on particular device characteristics.

High-Level Plotting Procedures
There are two procedures that allow an application to simply draw a

graph using a set of data.

Table 2.58: Graph Drawing Functions.

gplotv is completely self-contained. The application simply passes an
array of real values in the argumentv and the number of elements in the
array innpts. The argumentsx1 andx2 may be used to specify the
X-axis values to assign to the first and last elements of the data vectorv.
Finally, the argumenttitle is a character string plotted at the top of the
graph. This may be specified as EOS, a null string, in which case no title is
plotted. Note thatgplotv() does not require the graphics descriptor
argument (gp here). Opening and closing graphics are done entirely within
the procedure. On the other hand,gploto() does require the descriptor.
That is, the graphics must have been opened bygopen() (see below). All
othergio procedures require the graphics descriptor argument.gploto()
therefore permits more flexibility in resetting default plotting parameters.

Procedure Call Purpose

gplotv (v, npts, x1, x2, title) Complete plot

gploto (gp, v, npts, x1, x2, title) Plot a vector

Vector Graphics — gio 115

Setup
These procedures enable graphics to be written to a particular device

and control such operations as clearing the device (starting a new frame or
page).

Table 2.59: Graphics Device Setup Functions.

Note the distinction between the arguments togopen(). The first is a
string specifying the device on which to plot. This is most often coded
using a string assigned from a cl parameter to be assigned by the user. The
second argument is thegio I/O mode, analogous to the fio I/O modes. This
is usually coded using a parameter constant.NEW_FILE will initialize
graphics, erasing the screen or starting a new page whileAPPEND will not
initialize graphics but will use the scaling and other parameters from the
most recent graph (as long as the graphics buffer was not flushed). The
final parameter is thegraphics stream to use for the graphics metacode out-
put. There are three streams specified using defined parameter constants:
STDGRAPH, STDPLOT, andSTDIMAGE. The streams behave identically
but are resolved separately in disposing of the final plot. Example2.27
briefly demonstrates the most common way of opening graphics:

Procedure Call Purpose

gp = gopen (device, mode, fd) Open graphics

gclose (gp) Close graphics

gdeactivate (gp, flags) Deactivate graphics workstation

greactivate (gp, flags) Activate graphics workstation

gcancel (gp) Discard buffered graphics output

gflush (gp) Flush buffered graphics output

gclear (gp) Clear and reset the workstation

gframe (gp) Advance the frame

greset (gp, f) Reset graphics state

gmftitle (gp, metafile_title) Comment metacode

gpagefile (gp, fname, prompt) Page a file

116 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.27: Opening Graphics.

Graphics Parameters
There are a number of internalgio parameters that can be set in an SPP

task. These control such aspects of the plot such as line width and text
format. The system include file<gset.h> must beincluded to allow
reading or writing these parameters. It is also possible to query, but not set,
certain attributes of the specified graphics device.

Table 2.60: Graphics Parameter Control Functions.

Use gsetT() to set the value of a parameter andgstatT() to
inquire its value. Note the distinction between these procedures and the
ggetT() procedures to query device characteristics from thegraphics
capabilities (graphcap) file. gsetT() is implemented forint, real,

Procedure Call Purpose

gsetT (gp, param, value) Set graphics parameter

val = gstaT (gp, param) Query numeric graphics parameter

nchar = gstats (gp, param,
 outstr, maxch)

Query string graphics parameter

val = ggetT (gp, devcap) Query numeric device parameter

nchar = ggets (gp, devcap,
 outstr, maxch)

Query string device parameter

char device[SZ_LINE] # Device name
bool append # Append?
int mode # Graphics I/O mode
pointer gp # Graphics I/O descriptor
pointer gopen()
bool clgetb()
.
.

call clgstr ("device", device, SZ_LINE)
if (clgetb ("append"))

mode = APPEND
else

mode = NEW_FILE
gp = gopen (device, mode, STDGRAPH)

.

.

Vector Graphics — gio 117

andstring data types,gstatT() is implemented forint, andreal
data types, andggetT() is implemented forbool, int, andreal data
types.

Scaling
These procedures deal with plot scaling. There are two fundamental

coordinate systems used bygio: normalized device coordinates or NDC,
whose range is always 0:1 in both directions regardless of the device, and
the world coordinate system or WCS, defined by the application and
corresponding to the user’s data coordinates.

Table 2.61: Plot Scaling Functions.

NDC is associated with WCS usinggsview() and gswind() to
establish the plot scale. This may also be accomplished for a given set of
data usinggascale() orgrscale().

Drawing
The usual graphics primitives are available ingio such as basic pen

moves and draws, line, marker, polyline, polymarker, and text drawing.
The coordinates in every case are assumed to be in world coordinates
(WC).

Procedure Call Purpose

gsview (gp, x1, x2, y1, y2) Set NDC viewport

ggview (gp, x1, x2, y1, y2) Get NDC viewport

gswind (gp, x1, x2, y1, y2) Set WCS window

ggwind (gp, x1, s2, y1, y2) Get WCS window

gascale (gp, v, npts, axis) Set absolute WCS scale

grscale (gp, v, npts, axis) Set relative WCS scale

ggscale (gp, x, y, dx, dy) Get WCS scale

gctran (gp, x1, y1, x2, y2, wcs1, wcs2) Transform coordinates

gcurpos (gp, x, y) Get current pen position

118 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.62: Pen Movement Primitives.

Move and draw may be absolute or relative to the last pen position.

Table 2.63: Drawing Primitives.

gpline() and gpmark() take two vectors, with the X and Y
coordinates of each point, whilegvline() andgvmark() take a single
vector of Y coordinates, and the X coordinates are evenly distributed along
the X-axis, ranging fromx1 at v[1] to x2 at v[npts] in WCS
coordinates.

Procedure Call Purpose

gamove (gp, x, y) Pen up move in absolute WC

grmove (gp, x, y) Pen up move in relative WC

gadraw (gp, x, y) Pen down move in absolute WC

grdraw (gp, x, y) Pen down draw in relative WC

Procedure Call Purpose

gline (gp, x1, y1, x2, y2) Draw a line

gpline (gp, x, y, npts) Draw a polyline

gvline (gp, v, npts, x1, x2) Vector a polyline

gtext (gp, x, y, text, format) Draw text

gfill (gp, x, y, npts, style) Area fill

glabax (gp, title, xlabel, ylabel) Draw labeled axes

gmark (gp, x, y, marktype, xsize, ysize) Draw a marker

gpmark (gp, x, y, npts, marktype, xsize,
 ysize)

Draw a polymarker

gvmark (gp, v, npts, x1, x2, marktype,
 xsize, ysize)

Vector a polymarker

gumark (gp, x, y, npts, xcen, ycen, xsize,
 ysize, fill)

User defined marker

Terminal I/O — tty 119

Table 2.64: Cell Array Primitives.

A cell array is a gray-scale image. It is up to the graphics kernels
(device drivers) to support capabilities such as drawing cell arrays or filled
polygons. Most of the kernels do not support these.

Cursor Interaction
IRAF supports cursor read back through the cl so that a task may query

the cursor. See “Interactive Graphics Cursor” on page51 for a slightly
more complete description of cursor interaction.

Table 2.65: Cursor Interaction Functions.

Note that clgcur() is a clio procedure, not agio procedure.
Therefore, it does not require the graphics descriptor argument. Not all
devices support moving the cursor from host software sogscur() may
not have any effect.

2.8 Terminal I/O — tty

 The tty interface is a table driven, device independent interface for
controlling terminal and printer devices. Devices are described either by
environment definitions, or by an entry in thetty database file. Thetty

Procedure Call Purpose

gpcell (gp, m, nx, ny, x1, y1, x2, y2) Draw a cell array

ggcell (gp, m, nx, ny, x1, y1, x2, y2) Read a cell array

Procedure Call Purpose

gscur (gp, x, y) Move device cursor

stat = ggcur (gp, x, y, key) Get cursor position

clgcur (param, wx, wy, wcs, key,
 strval, maxch

Graphics cursor

120 Chapter 2: Libraries and Packages: The VOS Interface

database file is the standard Berkeley Unixtermcap terminal capability
database file (a text file), to which have been added entries for local printer
devices. Accessing the Unixtermcap file directly without modification is
sometimes awkward, but the benefits of accessing a widely used, standard
database more than compensate for any clumsiness.

When the cl starts up, the following environment variables are defined
to describe the default terminal and printer devices. The user may
subsequently change the values of these variables with theset statement
or with thestty program.

Table 2.66: TTY Environment Variables.

The variables defining the names of the default terminal and printer
devices will normally correspond to the names of device entries in the
termcap file. The name of a file containing a singletermcap entry for the
device may optionally be given; the filename must contain a virtual
filename (VFN) or operating system filename (OSFN) directory prefix to
be recognized as a filename. The default termcap file isdev$termcap.
Terminal initialization files (used to set tab stops) are files of the form
dev$tty.tbi, where tty is the last field of the Unix pathname in the if
termcap entry. If the first character of the if filename string is not a /, an
IRAF VFN should be given.

The value strings for the environment variablesttyncols and
ttynlines, defining the screen dimensions, are extracted from the
termcap file by the stty program during start-up. The screen
dimensions are defined in the environment for two reasons: efficiency, and
if a window is used, the logical screen dimensions may be less than the
physical screen dimensions. Most applications programs should therefore
useenvgeti() rather thanttygeti() to get the screen dimensions.

Variable Contents

printer Default printer (e.g.,versatec)

terminal Default terminal (e.g.,vt100, tek4012)

termcap Terminal or printer database filename

ttybaud Baud rate, default 9600

ttyncols Number of characters per line

ttynlines Number of lines per screen

Terminal I/O — tty 121

ttygeti() returns the physical screen dimensions as given in the
termcap file.

Open and Close
Before any tty control sequences can be output, the ttydevice descriptor

must be read from the termcap file into a buffer for efficient access.
ttyodes() is used to open thetty descriptor;ttycdes() should be
called when done to close the descriptor, returning all buffer space used. If
ttyname is terminal or printer, the descriptor for the default
terminal or printer is accessed.

Table 2.67: TTY Open and Close Functions.

Low Level Database Access, TTY Control
The ttyget() procedures are used to get capabilities from the

database entry. If the named capability is not found,ttygeti() returns
zero,ttygetb() returns false, andttygets() returns the null string.
ttysubi() performs argument substitution on a control sequence
containing at most two integer arguments (such as a cursor motion control
sequence), generating an output sequence suitable for input to
ttyputs(). ttyputs() puts the control sequence to the output file,
padding as required given the number of affected lines. The baud rate and
pad character, used to generate padding, are evaluated atttyodes()
time and are conveyed tottyputs() in the tty descriptor.

Procedure Call Purpose

tty = ttyodes (ttyname) Open tty descriptor

ttycdes (tty) Close tty

122 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.68: Low-Level TTY Database Functions.

ttygett() is implemented forint, real, andbool data types.

High-Level Control

Table 2.69: High-Level TTY Functions.

ttyctrl() calls ttygets() and ttyputs() to process and
output a control sequence (slightly less efficiently than if the control string
is buffered by the user code).ttygoto() moves the cursor to the desired
column and line.ttyputline() is like the fioputline(), except that
it processes any form feeds, standout mode directives, and other control
characters (including tabs) embedded in the text. Lines longer than
ttyncols are broken into several output lines.ttyputline() is used
by thehelp, page, type, andlprint utilities to map tabs and standout

Procedure Call Purpose

value = ttygett (tty, cap) Get a numeric parameter

nchars = ttygets (tty, cap, outstr, maxch) Get a string parameter

ttyputs (fd, tty, ctrlstr, afflncnt) Put a string parameter

ttysub (ctrlstr, outstr, maxch, arg1, arg2)

Procedure Call Purpose

stat = ttyctrl (fd, tty, cap, afflncnt) Output a control sequence

ttyso (fd, tty, YES|NO) Turn standout mode on or off

ttygoto (fd, tty, col, line) Move cursor absolute

ttyinit (fd, tty) Send:is and:if, if
defined

ttyclear (fd, tty) Clear screen

ttyclearln (fd, tty) Clear the current line

ttyputline (fd, tty, textline, map_cc) Put a text line

Bit & Byte Operations — osb 123

mode directives for a particular output device. Standout mode is mapped as
reverse video on most VDTs, and as underscore on most printers and on
overstrike terminals such as the Tektronix 4012.

2.9 Bit & Byte Operations — osb

Byte and Character Conversions

Table 2.70: Byte and Character Conversions.

chars are signed integers, whereas bytes as unsigned integers. The
bswapT() routines are used to swap bytes in short and long integer
arrays, as is sometimes required when transporting data between machines.
Themii package is available for conversions between a machine indepen-
dent integer format and the SPP data types (documented elsewhere). See
“Binary File I/O” on page98 for an example of extracting individual bytes
from a word.

Procedure Call Purpose

strpak (str, os_sttr, maxch) Pack OS string

strupk (os_str, str, maxch) Unpack OS string

chrpak (a, a_off, b, b_off, nchars) Packchar

chrupk (a, a_off, b, b_off, nchars) Unpackchar

bitpak (ival, wordp, offset, nbits) Pack an integer into a bitfield

bitupk (wordp, offset, nbits) Unpack an unsigned integer bit field

bitmov (a, a_off, b, b_off, nbits) Move a sequence of bits

bytmov (a, a_off, b, b_off, nbytes) Move bytes

bswaps (a, b, nshorts) Byte swapshort

bswap1 (a, b, nlongs) Byte swaplong

124 Chapter 2: Libraries and Packages: The VOS Interface

Character Comparisons
 The following are macro functions defined in the system include file

ctype.h. The statement

include <ctype.h>

must be in the code in order to use them.

Table 2.71: Character Comparison Functions.

These are macro definitions, not procedures (they produce in-line code
and need not be declared).TO_UPPER() andTO_LOWER() must only be
applied to letters of the proper case (use the procedureschrupr(),
chrlwr() otherwise).

Pack and Unpack Characters
These procedures convert between SPP character strings (short int

arrays) and packed byte blocks, i.e., a sequence of characters stored one per

Procedure Call Purpose

bool = IS_UPPER (char) Upper case?

bool = IS_LOWER (char) Lower case?

bool = IS_DIGIT (char) Numeral?

bool = IS_PRINT (char) Printable character?

bool = IS_CNTRL (char) Control Character?

bool = IS_ASCII (char) 7-bit ASCII character?

bool = IS_ALPHA (char) Letter (either case)?

bool = IS_ALNUM (char) Alphanumeric character?

bool = IS_WHITE (char) White space character?

char = TO_DIGIT (char) Convert integer to char

int = TO_INTEG (char) Convert digit to integer

char = TO_UPPER (char) Convert to upper case

char = TO_LOWER (char) Convert to lower case

Bit & Byte Operations — osb 125

byte, delimited byEOS (ASCII NUL). The conversion may be performed
in-place. That is, the input and output arrays may be the same.

Table 2.72: Pack and Unpack Functions.

Fortran Strings
There are two procedures that convert between SPP and Fortran

character strings:f77pak() converts an SPP string to a Fortran string
andf77upk() converts a Fortran string to an SPP string. An example is
shown in Example2.28.

Table 2.73: SPP/Fortran String Conversion.

Example 2.28: Converting Fortran/SPP Strings.

Note theescaped Fortran statement, preceded by%. See also “Fortran
statements” on page7.

Procedure Call Purpose

strpak (instr, outstr, maxch) Pack an SPP string into bytes

strupk (instr, outstr, maxch) Unpack an SPP string from bytes

chrpak (a, aoff, b, boff, nchars) Pack chars into bytes

chrupk (a, aoff, b, boff, nchars) Unpack chars from bytes

Procedure Call Purpose

f77pak (spp, f77, maxch) Convert SPP string to Fortran string

f77upk (F77, spp, maxch) Convert Fortran string to SPP string

Declare the Fortran string
% character*8 fstr
Declare the SPP string
char sstr[8]
.
.

Convert the SPP string to a Fortran string
call f77pak (sstr, fstr, 8)
Call the fortran subroutine
call forsub (fstr, ...)

.

.

126 Chapter 2: Libraries and Packages: The VOS Interface

Machine Independent I/O — mii
The mii integer format provides for three machine independent integer

data types and two IEEE floating point formats.

Table 2.74: Machine-Independent Integer Data Types.

These types are defined in the system include filemii.h which must
be included if usingmii. Themii data types are the same as are used in the
FITS transportable image format. In the case of the short and long integers,
the most significant bytes of an integer are given first.

The routines in this package are provided for converting to and from the
mii format and the SPP format. The latter format, of course, is potentially
quite machine dependent. The implementation given here assumes that the
SPP data types include 16-bit and 32-bit twos-complement integers; the
ordering of the bytes within these integer formats is described by the
machine constantsBYTE_SWAP2 andBYTE_SWAP4. Byte swapping for
the IEEE floating formats is defined by the machine constants
IEEE_SWAP4 andIEEE_SWAP8.

Table 2.75: Machine-Independent/SPP Conversion Functions.

Data Type Type of Number

MII_BYTE 8-bit unsigned byte

MII_SHORT 16-bit twos-complement signed integer

MII_LONG 32-bit twos-complement signed integer

MII_REAL 32-bit IEEE floating point

MII_DOUBLE 64-bit IEEE floating point

Procedure Call Purpose

miipak (spp, mii, nelems, spptype,
 miitype)

Pack an SPP array into an mii array

miiupk (mii, spp, nelems, miitype,
 spptype)

Unpack an mii array into an SPP array

nchars = miipksize (nelems, miitype) Size (chars) of the SPP array required
to store mii

nelem = miinelem (nchars, miitype) Number of mii elements in an SPP array

Pixel Lists — plio 127

Note the distinction in the above table between the size of an mii array,
specified as the number of array elements and the size of the SPP buffer,
specified as the number of SPP chars. The following example illustrates
reading anmii binary file consisting of byte (eight bit unsigned) values:

Example 2.29: Reading an mii Binary File.

2.10 Pixel Lists — plio

The pixel list package is a general package for flagging individual pixels
or regions of an image, to mark some subset of the pixels in an image. This
may be done to flag bad pixels, or to identify those regions of an image to
be processed by some applications program. When the pixel list package is
used to flag the bad pixels in an image we call this abad pixel mask, or
BPM. When used to identify the regions of an image to be processed (or
ignored), the list is called aregion mask. The documentPixel List Package
Design [Tody88] fully describes the details of the pixel list package. Here
we only summarize and present a brief example. Example2.30 opens a
data image and the associated mask image, and sums the pixels within the
area indicated by the mask.

include <mii.h>
int rf # Rasterfile file descriptor
int nelem # Number of mii elements
pointer rpm, rps # Rasterfile buffer descriptor
int nchar # SPP size of mii array
int read(), miipksize()
begin

nchar = miipksize (nelem, MII_BYTE)
Allocate buffer for reading mii data
call malloc (rps, nchar, TY_SHORT)
Allocate SPP data array
call malloc (rpm, nelem, TY_CHAR)
Read the file
if (read (rf, Memc[rpm], nchar) != nchar)

call error (0, "Could not read input file")
Unpack the data
call miiupk (Memc[rpm], Mems[rps], nelem, MII_BYTE, TY_SHORT)
.
.
call mfree (rpm, TY_CHAR)
call mfree (rps, TY_SHORT)

end

128 Chapter 2: Libraries and Packages: The VOS Interface

Example 2.30: Opening Data Image and Associated Mask.

A more complex application might use the spatial information provided
by v andnpix, or the flag values provided bymval (for an integer mask).
For example, a surface fitting routine would accumulate each line segment
into a least squares matrix, using the coordinate information provided as
well as the pixel values.

include <pmset.h>

task sum = t_sum
SUM -- Sum the image pixels lying within the given mask

procedure t_sum()

char image[SZ_FNAME] # Input data image
char mask[SZ_FNAME] # image mask
int npix, mval, totpix, mflags
long v[PM_MAXDIM]
pointer im, mp, pp
real sum
bool clgetb()
real asumr()
int mio_glsegr()
pointer immap(), mio_open()

begin
call clgstr ("image", image, SZ_FNAME)
call clgstr ("mask", mask, SZ_FNAME)
m_flags = 0
if (clgetb ("invert"))

m_flags = INVERT_MASK
im = immap (image, READ_ONLY, 0)
mp = mio_open (mask, m_flags, im)
sum = 0; totpix = 0
while (mio_glsegr (mp, pp, mval, v, npix) != EOF) {

sum = sum + asumr (Memr[pp], npix)
totpix = totpix + npix

}
call mio_close (mp)
call imunmap (im)
call printf ("%d pixels, sum=%g, mean=%g\n")

call pargi (totpix)
call pargr (sum)

if (totpix > 0)
call pargr (sum / totpix)

else
call pargr (INDEF)

end

World Coordinates — mwcs 129

2.11 World Coordinates — mwcs

The mini-World Coordinate System (mwcs) interface is a package of
procedures to handle the general problem of representing a linear or
nonlinear world coordinate system (WCS). It may be used for determining
the coordinates of pixels in an image, for example. Of course, enough
information must be available to perform the appropriate coordinate
transformations. While the interface is designed with the typical
application to image data in mind,mwcs is intended as a general
coordinate transformation facility for use with any type of data, as an
embedded interface in other software, including system interfaces such as
imio andgio as well as user applications. Themwcs package is referred to
as a prototype since some functionality is missing.

• All WCS functions are built in (hard coded), hence the interface is not
extensible at runtime and the only way to support new applications is
through modification of the interface (by adding new function drivers).

• There is no support for modeling geometric distortions, except possibly
in one dimension.

• There is no provision for storing more than one world coordinate system
in FITS oriented image headers, although multiple WCS are supported
internally by the interface, and are preserved and restored across
mw_save() andmw_load() operations.

• Coordinate transforms involving dependent axes must include all such
axes explicitly in the transform. Dependent axes are axes which are
related, either by a rotation, or by a WCS function. Operations which
could subset dependent axis groups, and which are therefore disallowed,
include setting up a transform with an axes bitmap which excludes
dependent axes, or more importantly, an image section involving dimen-
sional reduction, where the axis to be removed is not independent. This
could happen, for example, if a two-dimensional image were rotated and
one tried to open a one-dimensional section of the rotated image.

For a more detailed discussion of the mwcs implementation and
coordinate transformations in general, refer to the documentMini-WCS
Interface [Tody89], also available on-line insys$mwcs/MWCS.hlp. Use
the help facility in the IRAF cl to read or print it.

130 Chapter 2: Libraries and Packages: The VOS Interface

Coordinate Systems
Themwcs package defines three coordinate systems between which two

transformations are performed. The three coordinate systems are defined as
follows:

• Physical - The physical coordinate system is the raw coordinate system
of the data. In the case of an image, the physical coordinate system
refers to the pixel coordinates of the original data frame. All other coor-
dinates systems are defined in terms of the physical system (reference
frame).

• Logical - The logical coordinate system is defined by theLterm (see
below) in terms of the physical coordinate system. In the case of an
image, the logical coordinate system specifies raw pixel coordinates rel-
ative to some image section or derived image, i.e., the coordinates used
for image I/O. In themwcs the Lterm specifies a simple linear transfor-
mation, in pixel units, between the original physical image matrix and
the current image section.

• World - The world coordinate system is defined by theWterm (see
below) in terms of the physical coordinate system. Any number of dif-
ferent kinds of world coordinate systems are conceivable. Examples are
the tangent (gnomonic) projection, specifying right ascension and decli-
nation relative to the original data image, or any linear WCS, e.g., a lin-
ear dispersion relation for spectral data. Multiple world coordinate
systems may be simultaneously defined in terms of the same physical
system.

The coordinate systems are referred to by the stringsphysical,
logical, andworld. Note that there may be many Wterms specified for
any one WCS. Theworld system refers to the current Wterm defined.
Other Wterms are referred to by user-supplied names (see
mw_newsystem()) and can be made the current system by
mw_ssystem(). The two transformations are specified by the Lterm and
the Wterm. The Lterm specifies a linear transformation between the
physical and logical coordinate systems. The Wterm specifies the
transformation between the physical and world coordinate systems The
general flow of transforming coordinates is:

1. Retrieve or Create the Lterm and/or Wterm usingmw_open(),
mw_openim(), etc.

2. Modify the Lterm and/or Wterm (if necessary) usingmw_slterm(),
mw_swterm(), etc.

World Coordinates — mwcs 131

3. Precompute the transformations between the coordinate systems using
the proceduremw_sctran()

4. Perform the transformations for specific coordinates using
mw_ctran(), etc.

A WCS always has a number of predefined attributes, and may also
have any number of user defined, or WCS specific, attributes. These are
defined when the WCS is created, in thewattr argument input to
mw_swtype(), or in a subsequent call tomw_swattrs(). The WCS
attributes for a specific axis may be queried with the function
mw_gwattrs(). Attribute values may be modified, or new attributes
defined, withmw_swattrs(). The issue of WCS attributes is discussed
further in the next section. The WCS attributes which can be set by the
wattr term consist of a number of standard attributes, plus an arbitrary
number of additional WCS specific (application defined) attributes. The
following standard attributes are reserved (but not necessarily defined) for
each WCS:

Table 2.76: WCS Standard Attributes.

In addition, the following are defined for the entire WCS, regardless of
the axis:

Table 2.77: WCS Attributes.

For example, to determine the WCS type for axis 1:

call mw_gwattrs (mw, 1, "wtype", wtype, SZ_WTYPE)

Attribute Definition

units Axis units (pixels, etc.)

label Axis label, for plots

format Axis numeric format, for tick labels

wtype WCS type, e.g.,linear

Attribute Definition

system System name (logical, physical, etc.)

object External object with which WCS is associated

132 Chapter 2: Libraries and Packages: The VOS Interface

Axis Mapping
The coordinate transformation procedures include support for a feature

called axis mapping, used to implement dimensional reduction. A example
of dimensional reduction occurs inimio, when an image section is used to
specify a subraster of an image of dimension less than the full physical
image. For example, the section might specify a one dimensional line or
column of a two or higher dimensional image, or a two dimensional section
of a three dimensional image. When this occurs the application sees a
logical image of dimension equal to that of the image section, since
logically an image section is an image. Dimensional reduction is
implemented inmwcs by a transformation on the input and output
coordinate vectors. The internalmwcs coordinate system is unaffected by
either dimensional reduction or axis mapping; axis mapping affects only
the view of the WCS as seen by the application using the coordinate
transformation procedures. For example, if the physical image is an image
cube and we access the logical image section[*,5,*], an axis mapping
may be set up which maps physical axis one to logical axis one, physical
axis two to the constant 5, and physical axis three to logical axis two. The
internal system remains three dimensional, but the application sees a two
dimensional system. Upon input, the missing axisy=5 is added to the two
dimensional input coordinate vectors, producing a three dimensional
coordinate vector for internal use. During output, axis two is dropped and
replaced by axis three. The axis map is entered withmw_saxmap() and
queried withmw_gaxmap(). Here,axno is a vector, with axno[i]
specifying the logical axis to be mapped onto physical axisi. If zero is
specified, the constantaxval[i] is used instead. Axis mapping may be
enabled or disabled with a call tomw_seti(). Axis mapping affects all of
the coordinate transformation procedures and all of the coordinate system
specification procedures. Axis mapping is not used with those procedures
which directly access or modify the physical or world systems (e.g.,
mw_slterm() or mw_swterm()) since full knowledge of the physical
system is necessary for such operations.

World Coordinates — mwcs 133

Object Creation and Storage
The mwcs interface routines used to create or accessmwcs objects, or

save and restoremwcs objects in external storage, are summarized below.

Table 2.78: MWCS Object Functions.

mw_open() creates a newmwcs object and a pointer to it is returned.
If bufptr is NULL, then an identity transformation is created with the
dimension specified byndim. If bufptr is pointing to an encodedmwcs
buffer, the mwcs object is loaded with that informationmw_openim()
initializes anmwcs object with data from the image pointed to by the
image descriptorim. If the image contains no mwcs information, an
identity transformation is loaded instead.mw_newcopy() creates a new
mwcs object that is a copy of themwcs object specified bymw.
mw_close() deallocates the memory structures associated with the
mwcs object mw. mwcs objects can be saved in an encoded,
machine-independent format in a memory array. This array can then be
saved into a file, sent over the network, etc.mw_save() will save the
contents of themwcs objectmw into the memory pointed to by the char
pointerbufptr. If bufptr isNULL, a memory buffer is allocated whose
pointer is returned inbufptr. If bufptr is not NULL, the buffer, of
lengthbuflen, is used (and resized if necessary). The length of the buffer
is returned. The buffer bufptr can be used in the callsmw_open() and
mw_load(). mw_load() reloads themwcs objectmw with information

Procedure Call Purpose

mw = mw_open (bufptr, ndim) Create an mwcs object

mw = mw_openim (im) Create an mwcs object based on
information from an image

ms = mw_newcopy (mw) Create new copy of an mwcs object

mw_close (mw) Remove an mwcs object

mw_load (mw, bufptr) Reload an mwcs object

mw_save (mw, bufptr, buflen) Save mwcs information in a buffer

mw_laodim (mw, im) Reload a mwcs object from image
header information

mw_saveim (mw, im) Save an mwcs object into an image
header

134 Chapter 2: Libraries and Packages: The VOS Interface

contained in the buffer bufptr saved bymw_save(). mw_loadim()
reloads an existing mwcs objectmw with information from the image
pointed to by the image descriptorim. mw_saveim() saves the contents
of themwcs objectmw into the image pointed to by the image descriptor
im.

Coordinate Transformation Procedures
The mwcs procedures used to perform coordinate transformations are

summarized below.

Table 2.79: MWCS Coordinate Transformation Procedures.

The mw_sctran() procedure precomputes the transformation from
one coordinate system,system1, to another, system2, for the specified
axes in themwcs objectmw returning a pointer to the optimized coordinate
transformation. This pointer, ct is used in the subsequent coordinate

Procedure Call Purpose

ct = mw_sctran (mw, system1,
 system2, axes)

Compile a coordinate
transformation between systems

ival = mw_gctransT (ct, ltm, ltv,
 axtype1, axtype2, maxdim)

Return the compiled
transformation

mx_ctfree (ct) Deallocate the coordinate
transformation structure

x2 = mw_c1tranT (ct, x1) Return the transformation of a
single point

mw_v1tranT (ct, x1, x2, npts) Return the transformation of an
array of points

mw_c2tranT (ct, x1, y1, x2, y2) Return the two-dimensional
transformation of a point

mw_v2tranT (ct, x1, y1, x2, y2,
 npts)

Transform an array of two
dimensional points

mw_ctranT (ct, p1, p2, ndim) Transform an arbitrarily
dimensioned point

mw_vtranT (ct, v1, v2, ndim,
 npts)

Transform an array of arbitrarily
dimensioned points

World Coordinates — mwcs 135

transformation calls,mw_c2tran(), etc. Theaxes argument is a bitfield
that represents which axes the transformation should apply to. That is, if
you wish to transform the first two axes (x and y), setaxis = 3. The
mw_gctrant() procedure retrieves a compiled linear transformation and
returns the dimensionality of the transformation. The argument ltm
contains the coefficient determination matrix,ltv contains the translation
vector, axtype1 contains the axis types for each of the axes in the source
coordinate system,axtype2 contains the axis types in the destination
coordinate system, andmaxdim specifies the maximum dimensionality
that the arrays can handle.

Coordinate System Specification
The procedures used to enter, modify, or inspect themwcs logical and

world coordinate transformations are summarized below.

Table 2.80: MWCS System Specification Functions.

The proceduresmw_sltermT() and mw_gltermT() are used to
directly enter or inspect the Lterm of themwcs objectmw, which consists
of the linear transformation matrixltm and the translation vectorltv,

Procedure Call Purpose

mw_sltermT (mw, ltm, ltv, ndim) Set the Lterm for the specified object

mw_gltermT (mw, ltm, ltv, ndim) Get the Lterm for the specified object

mw_ssystem (mw, system) Set the default world system

mw_newsystem (mw, system, ndim) Create a new world coordinate system

mw_swtermT (mw, r, w, cd, ndim) Set the Wterm for the current system

mw_gwtermT (mw, r, w, cd, ndim) Get the Wterm for the current system

136 Chapter 2: Libraries and Packages: The VOS Interface

both of dimensionndim, defining the transformation from the physical
system to the logical system.

Table 2.81: Axis Specification Functions.

Table 2.82: Applying Transformations to Lterm.

 If the logical system undergoes successive linear transformations,
mw_translate() may be used to translate, rather than replace, the
Lterm of themwcs object mw, where the given transformation matrix and
translation vector refer to the relative transformation undergone by the
logical system. This will always work since the Lterm is initialized to the
identity matrix when a newmwcs object is created. See also
mw_rotate(), mw_scale(), andmw_shift().

Procedure Call Purpose

mw_saxmap (mw, axno, axval, ndim) Set the axis mapping

mw_gaxmap (mw, axno, axval, ndim) Get the axis mapping

mw_swtype (mw, axis, naxes, wtype,
wattr)

Set the axis type and attribute

mw_swattrs (mw, axis, attribute, valstr) Set the axis attribute

mw_gwattrs (mw, axis, attribute, valstr) Get the axis attributes

mw_swsampT (mw, axis, pv, wv, npts) Set a world system using sampled data

mw_gwsampT (mw, axis, pv, wv, npts) Get a world system using sampled data

Procedure Call Purpose

mw_translator (mw, ltv_1, ltm,
 ltv_2, ndim)

Apply a general transformation to
the Lterm, single precision

mw_translated (mw, ltv_1, ltm,
 ltv_2, ndim)

Apply a general transformation to
the Lterm, double precision

mw_rotate (mw, theta, center,
 axes)

Apply a rotation transformation to
the Lterm

mw_scale (mw, scale, axes) Apply a scale transformation to
the Lterm

mw_shift (mw, shift, axes) Apply a translation (shift)
transformation to the Lterm

World Coordinates — mwcs 137

Generic coordinate transformations are available using the procedures
mw_translate(), mw_rotate(), mw_scale, andmw_shift. The
mw_translate() procedure is the most general, with the others
provided as convenient front-ends. Note thatmw_rotate() rotates the
Lterm of themwcs objectmw through the angle theta, specified in radians,
about an arbitrary point center for the specified axes. The axes argument is
abitfield representing which axes to which the transformation applies. That
is, each bit represents an axis to transform.

mwcs Parameters
Themwcs status procedures, used to query or set themwcs parameters,

are as follows.

Table 2.83: MWCS Status Procedures.

Table 2.84: MWCS Interface Parameters.

MW_NDIM may differ from MW_NPHYSDIM if dimensional reduction
has been specified and axis mapping is enabled.MW_NWCS returns the
number of WCS currently defined; at least two WCS are always defined,

Procedure Call Purpose

mw_seti (mw, what, ival) Set a parameter

ival = mw_stati (mw, what) Retrieve a parameter

Name Type Description

MW_NDIM int Dimensionality of logical system

MW_NWCS int Number of WCS defined

MW_REFIM int Reference image, if any

MW_USEAXMAP bool true if axis mapping is enabled

MW_NPHYSDIM int Dimensionality of physical system

MW_SAVELEN int Character required formw_save() buffer

138 Chapter 2: Libraries and Packages: The VOS Interface

i.e., the logical and physical systems (the world system will default to the
physical system if not otherwise defined).

Matrix Routines
The following general purpose matrix manipulation routines are used

internally within the interface to compile or evaluate transformations, and
may be useful in applications code as well.

Table 2.85: Matrix Routines.

Each is implemented for bothreal and double variables. They
operate on square matrices whose dimensions are specified byndim, i.e.,
ltm[ndim,ndim].

Examples
This section presents of a few simple examples to demonstrate the basic

workings of themwcs interface. The examples will be code fragments
showing the necessary declarations, etc., and are not intended to be
complete programs.

Example2.31 shows how to retrieve themwcs information from an
image. Example2.32 will create a WCS such that the world system is
centered on an image and the axis decrease value with increasing pixel
value. Example2.33 shows some examples of transforming coordinates
with an already openedmwcs object. Assume that themwcs object
describes a transformations for a three dimensional image. The final
example (Example2.34) prints all the values for all the attributes of all the
axis of an image’s mwcs.

Procedure Call Purpose

mw_invertt (o_ltm, n_ltm, ndim) Invert a square matrix

mw_mmult (ltm_1, ltm_2, ltm_out, ndim) Multiply two matrices

mw_vmult (ltm, ltv_in, ltv_out, ndim) Multiply a matrix and a vector

World Coordinates — mwcs 139

Example 2.31: Retrieving mwcs Information From an Image.

This next example creates a WCS such that the world system is centered
on an image and the axis decreases with increasing pixel values.

Example 2.32: Creating WCS Centered on Image.

pointer mw, im
char imagename[SZ_FNAME]

.

.
Open the image and the mwcs of the image
call clgstr ("image", imagename, SZ_FNAME)
im = immap (imagename, READ_ONLY, O)
mw = mw_openim (im)
Perform any mwcs manipulation
Close the image and the mwcs.
call mw_close (mw)
call imunap (im)

include <imhdr.h>

pointer mw, im, mw_open(), immap()
real cd[2,2], r[2], w[2]
.
.
begin

Create a new 2-dimensional mwcs object
mw = mw_open (NULL, 2)
Open an image
im = immap (imagename, READ_WRITE, 0)
Modify the Wterm as described above.
cd[1,1] = -1.0
cd[2,2] = -1.0
cd[1,2] = 0.0
cd[2,1] = 0.0
r[1] = IM_LEN(im, 1) / 2.
r[2] = IM_LEN(im, 2) / 2.
w[1] = 0.0
w[2] = 0.0
call mw_swtermr (mw, r, w, cd, 2)
Place the new mwcs object into the image header.
call mw_saveim (mw, im)
.
.

140 Chapter 2: Libraries and Packages: The VOS Interface

The following examples transform coordinates with an already opened
mwcs object. Assume that the object describes a transformation for a
3-dimensional image.

Example 2.33: Transforming Coordinates in an Open mwcs.

pointer im, mw, immap(), mw_open()
pointer lw1ct, wl1ct, lw2ct, wl2ct, lw3ct, mw_sctran()
real mw_c1tranr()
real logical_point, world_point
real logical3_array[3,npts], world3_array[3,npts]
double world2d_x, world2d_y, logical2d_x, logical2d_y
double logical_point_array[npts], world_point_array[npts]
.
.
begin

Open image and its mwcs
im = immap (imagename, READ_ONLY, 0)
mw = mw_openim (im)
Compute the 1-dimensional transformation from the logical to
world and world to logical systems for the first axis.
lw1ct = mw_sctran (mw, "logical", "world", 1b)
wl1ct = mw_sctran (mw, "world", "logical", 1b)
Define the 2-dimensional transformation for the 2nd and 3rd axis
lw2ct = mw_sctran (mw, "logical", "world", 6b)
wl2ct = mw_sctran (mw, "world", "logical", 6b)
Define the full 3-dimensional transformation for all the axis
lw3ct = mw_sctran (mw, "logical", "world", 7b)
wl3ct = mw_sctran (mw, "world", "logical", 7b)
Transforms various points
world_point = mw_c1tranr (lw1ct, logical_point)
logical_point = mw_c1tranr (wl1ct, world_point)

call mw_v1trand (lw1ct, logical_point_array, world_point_array, npts)
call mw_c2trand (wl2ct, world2d_x, world2d_y, logical2d_x, logical2d_y)
call mw_vtranr (lw3ct, logical3_array, world3_array, 3, npts)
.
.

World Coordinates — mwcs 141

The example below prints all values for all attributes of all axes of an
image’s mwcs.

Example 2.34: Printing Axis Attribute Values for a mwcs.

include <mwset.h>

pointer im, mw, immap(), mw_openim()
int axis, attr_index, mw_stati()
char attr_index_string[SZ_LINE], value[SZ_LINE]
.
.
begin

Open the image and its mwcs
im = immap (imagename, READ_ONLY, 0)
mw = mw_openim (im)

do axis = 1, mw_stati (mw, MW_NDIM) {
call printf ("For axis %d:\n")
call pargi (axis)

attr_index = 1

repeat {
call sprintf (attr_index_string, SZ_LINE, "%d")
call pargi (attr_index)

ifnoerr (call mw_gwattrs (mw, axis, attr_index_string,
value, SZ_LINE)

call printf ("For attribute %d, %s, the value is %s.\n")
call pargi (attr_index)
call pargstr (attr_index_string)
call pargstr (value)
attr_index = attr_index + 1

} else {
call printf ("No more attributes for axis %d.\n")
call pargi (axis)
break

}
}

}
 .

.

142 Chapter 2: Libraries and Packages: The VOS Interface

2.12 Miscellaneous — etc

cl Environment Variables
These procedures return the value of a cl environment variable. There is

a separate procedure for each of the data types bool, int, real,
double, and character strings. There is no distinction made between the
variously sized integer variables. If the variable is not found or cannot be
converted to the appropriate data type, the procedures abort.

Table 2.86: Reading Environment Variables.

Procedure Call Purpose

bool = envgetb (varname) Get a boolean environment variable

int = envgeti (varname) Get an integer environment variable

real = envgetr (varname) Get a real environment variable

double = envgetd (varname) Get a double environment variable

envgets (key, value, maxch) Get a string environment variable

Miscellaneous — etc 143

Time and Timing
These procedures deal with absolute local time as well as relative CPU

clock time.

Table 2.87: Clock and Timing Procedures.

Theclktime() procedure gets the current clock time (local standard
time) in units of seconds since 00:00:00 1 January 1980. This can be
broken down into days, hours, seconds, etc. withbrktime(), or printed
as a date and time string withcnvtime(). Thebrktime() breaks the
long integer time returned byclktime() into the fields of the structure
defined in<time.h>. The procedure is valid from 00:00:00 on 1 January
1980 to 23:23:59 28 on February 2100.cnvdate() converts a time in
integer seconds since midnight on 1 January 1980 into a short string such
as "May 15 18:24".cnvtime() converts a time in integer seconds since
midnight on 1 January 1980 into a string, i.e., "Mon 16:30:05 17-Mar-82".
The length of the output strings for the procedures is given by the
parameterSZ_DATE in <time.h>.

Procedure Call Purpose

brktime (ltime, tm) Convert a long integer time into
year, month, day, etc.

long = clktime (old_time) Get the clock time

cnvdate (ltime, outstr, maxch) Convert long integer time to date
string (short format)

cnvtime (ltime, outstr, maxch) Convert long integer time to time
string (long format)

long = cputime (old_cputime) Get the CPU time consumed by
process

sys_mtime() Mark the time (for timing
programs)

sys_ptime() Print the elapsed time since last
mark

144 Chapter 2: Libraries and Packages: The VOS Interface

Table 2.88: Time Parameters.

Process Information
These procedures return information about the current process.

Table 2.89: Process Information Functions.

Parameter Contents

SZ_TIME Size of dow 00:00:00
dd-Mmm-yy

SZ_DATE Size of mmm dd hh:mm

LEN_TMSTRUCT Length of time struct

TM_SEC Seconds (0-59)

TM_MIN Minutes (0-59)

TM_HOUR Hour (0-23)

TM_MDAY Day of month (1-31)

TM_MONTH Month (1-12)

TM_YEAR Year, e.g., 1982

TM_WDAY Day of week (Sunday is 1)

TM_YDAY Day of year (1-366)

Procedure Call Purpose

getuid (outstr, maxch) Get the name of the runtime user
of a program

gethost (outstr, maxch) Get the network name of the host
machine

int = getpid() Get the process id

sysid (oustr, maxch) Return a line of text identifying
the process

Miscellaneous — etc 145

The getpid() procedure returns an integer process identifier, while
the others return a string value. Thesysid() procedure returns a line of
text identifying the current user, machine, and version of IRAF, and
containing the current date and time of the form:

NOAO/IRAF V1.3 username@lyra Tue 09:47:50 27-Aug-85

The string NOAO/IRAF V1.3 is given by the value of the cl
environment variableversion. The stringusername is the value of
the environment variableuserid, defined by the user in thelogin.cl
file. The output string is not terminated by a newline.

Convert Flags
These procedures convert betweenbool variables andint logical flags
having the valuesYES orNO.

Table 2.90: Flag Conversion Functions.

Miscellaneous Functions

Table 2.91: Miscellaneous Functions.

Procedure Call Purpose

int = btoi (boolean_value) Convert boolean to integer flag

bool = itob (int_value) Convert integer to boolean

Procedure Call Purpose

int = lpopen (device, mode, type) Open the line printer as a file

int = oscmd (cmd, infile,
 outfile, errfile)

Send a command to the host
operating system

pagefiles (files) Display a text file or files on the
standard output

qsort (x, nelem, compare) General quick sort for any data
structure

tsleep (seconds) Delay process execution

146 Chapter 2: Libraries and Packages: The VOS Interface

Theoscmd() procedure sends a machine dependent command to the
host operating system. It tries to spool the standard output and error output
in the named files if the names for the files are not null. The integer flagOK
is returned if the command executes successfully. The qsort()
procedure is a general quicksort for arbitrary objects. The argumentx is an
int array indexing the array to be sorted. The user supplied function
compare(x1,x2) is used to compare objects indexed by x. The value
returned by compare has the following significance for sorting in
increasing order:

compare

1− if'�obj x1[] <�obj x2[]
0 if�obj x1[] =�obj x2[]
1 if�obj x1[] >�obj x2[] 

 
 

=

 147

147

C H A P T E R 3 :

Error
Handling

The SPP language provides two facilities for error handling (see
Table3.1).

Table 3.1: Error Handlers in SPP.

An error is signalled by calling theerror() procedure. The
error() procedure takes two arguments. The first argument is the error
number. Application programs that call the error procedure should use an
error number between 1 and 500. Numbers above 500 are used for system
errors. The error number is used by any code which catches errors to distin-
guish between the different types of errors. If your application program
does not catch errors, the error number is arbitrary. The second argument is
the error message. This argument is a string printed on the standard error
stream, which is usually connected to the user’s terminal. Note that the
error message shouldnot contain any newline (\n) characters. The proce-
dure in Example3.1 demonstrates the use of the error procedure.

Procedure Error Handled

error (errno, errtext) Signal error condition (errtext
cannot include\n)

fatal (errno, errtext) Signal fatal error condition

148 Chapter 3: Error Handling

Example 3.1: Errors Flagged by error() Procedure.

There is another procedure with the same arguments aserror()
namedfatal() . The difference between the two procedures is the sever-
ity of the error level. Errors which are posted by thefatal() procedure
cannot be caught.

iferr

Errors are caught by enclosing the statements to be checked for errors in
an iferr block or anifnoerr block. An iferr block has one of two
forms. The first form can only check a single statement and the statement
must either be an assignment statement or a procedure call. The second
form can check any number of statements of any type. The two forms of
the iferr block have the following syntax:

iferr (statement) { iferr {
statements statements

} else { } then {
statements statements

} } then {
statements

}

Figure 3.2: Syntax for iferr .

GEOMEAN-- Calculate the geometric mean of a real array
real procedure geoman (x, n)
real x # i: Array of positive numbers
int n # i: Size of array
#--
int i
int sum
begin

if (n <= 0)
call error (1, “Can’t compute geometric mean: no values”)

sum = 0.0
do i = 1, n {

if (x[i] <= 0.0)
call error (1, “Can’t compute geometric mean: <0”)

else
sum = sum + log (x[i])

}
return exp (sum / real(n))

end

Single Condition,
Assignment/Procedure Call

Multiple Conditions,
Multiple Statements

else {

errchk 149

The else portion of the iferr block is optional. The meaning of an
iferr block is that if an error occurs (i.e., if error() was called by one
of the statements in the block) while executing the statements checked by
the block, then execute the following code, but otherwise execute the code
in the else block. The normal action of the error procedure, which is to
print a message on the standard error stream, is suppressed. The syntax of
an ifnoerr block is the same as that of the iferr block, except that the
keyword iferr is replaced by ifnoerr. The meaning of an ifnoerr
block is the opposite of that of the iferr block. If no error occurs during
the execution of an ifnoerr block, then the following code is executed,
otherwise the else block is executed. The following example shows the
two forms of the iferr block.

Example 3.3: Two Ways to Use the iferr Block.

If there is more than one procedure call in a given block, then
errchk() all of them except the last (see below).

errchk

In Example 3.3, the iferr block catches an error in a procedure that it
calls directly, geomean. It is possible, however, for the error to occur in a
subroutine that is called indirectly, that is, called by the called procedure. In
order for the iferr block to check for these errors, an errchk state-
ment must be added to each of the procedures between the procedure with
the iferr block and the procedure which contains the error() call.
The errchk statement is placed in the declarations section of the proce-
dure and has the following syntax:

errchk list of procedure names

When an error occurs in a procedure whose name is listed in an
errchk statement, program execution in the calling procedure jumps to
the return statement. Thus the rest of the code in the calling procedure is
skipped. By including errchk statements in all of the routines between
the procedure with the iferr block and the procedure which contains the

iferr (result = geoman (x, n)) {
result = 0.0

}

iferr {
result = geoman (x, n)

} then {
result = 0.0

}

150 Chapter 3: Error Handling

error() call, program execution will return to the iferr block without
executing any intervening code if the error() procedure is called.
Example 3.4 shows the use of the errchk statement. The lowest level
procedure, gtdist, computes the distance between two points. If this dis-
tance is zero, it calls the error() procedure. The intermediate level pro-
cedure, gtinv, computes the inverse of the distance. To prevent the
procedure from trying to compute the inverse of zero, the procedure con-
tains an errchk statement for gtdist. This causes the execution of the
program to skip this statement and return to the iferr block in gtline.

Example 3.4: Using the errchk Statement.

include <mach.h> # Defines EPSILONR

GTLINE -- Compute the line between two points (A*x + B*y + C = 0)

bool procedure gtline (p1, p2, a, b, c)

real p1[2] # i: First point
real p2[2] # i: Second point
real a # o: X coefficient
real b # o: Y coefficient
real c # o: Constant term
#--
real inv

begin
iferr (call gtinv (p1, p2, inv)) {

The two points coincide
a = 0.0 ; b = 0.0 ; c = 0.0
return false

} else {
a = (p1[2] - p2[2]) * inv
b = (p2[1] - p2[1]) * inv
c = (p1[1] * p2[2] - p1[2]) * 8nv
return true

}
end

GTINV -- Calculate inverse of the distance between two points

procedure gtinv (p1, p2, inv)

real p1[2] # i: First point
real p2[2] # i: Second point
real inv # o: Inverse distance
#--
real dist
errchk gtdist

begin
call gtdist (p1, p2, dist)
inv = 1.0 / dist

end (Continued...)

Additional Error Handling Procedures 151

Example 3.4 (Continued): Using the errchk Statement.

Additional Error Handling Procedures

IRAF provides several procedures for handling errors in aniferr
block. Theerrcode procedure returns the error code that was passed to
the error() procedure. This allows the program to distinguish between
different kinds of errors. Theerrget procedure also returns the error
code and in addition returns the error message that was passed to the
error() procedure. Theerract procedure allows a program to repost
the error that was caught by theiferr block. Theerract procedure has
one argument, the severity level of the error. There are three error levels
and they are defined in the include fileerror.h . The two highest levels,
EA_FATAL andEA_ERROR, correspond to the error levels produced by
the proceduresfatal() and error() respectively. Thus calling
erract with the argumentEA_FATAL is the same as callingfatal()
with the same error that was previously posted byerror() . Similarly,
calling erract with the argumentEA_ERROR is the same as calling
error() again. The lowest error level isEA_WARN. If erract is called
with an argument ofEA_WARN, the error message is printed on the stan-
dard error stream and execution of the program proceeds as usual. The call-
ing sequences for these three routines are the following.

GTDIST -- Calculate the distance between two points

procedure gtdist (p1, p2, dist)

real p1[2] # i: First point
real p2[2] # i: Second point
real dist # o: Distance
#--
real dx, dy, distsq

begin
dx = p2[1] - p1[1]
dy = p2[2] - p1[2]
distsq = dx * dx + dy * dy
if (distsq < EPSILONR)

call error (1, “The two points coincide”)
else

dist = sqrt (distsq)
end

152 Chapter 3: Error Handling

Table 3.2: Error Handling Procedures.

The following example (Example 3.5) illustrates the use of the
errcode and erract procedures. It converts all errors with a code of
one to warnings and reposts all other errors as errors.

Example 3.5: Using the errcode and erract Procedures.

Call Error Handled

code = errcode () Return error code

code = errget (oustr, maxch) Return error code and message

erract (severity) Repost error

xer_reset () Reset error state

include <error.h>

JDATE -- Print the Julian data for each date in the file

procedure jdate (fname)

char fname[ARB] # i: File name
#--
char line[SZ_LINE]
int fd, year, month, day, date

int open(), getline(), errcode()

begin
fd = open (fname, READ_ONLY, TEXT_FILE)
while (getline (fd, line) != EOF) {

iferr (call parse_date (line, month, day, year)) {
if (errcode () == 1)

call erract (EA_WARN)
else

call erract (EA_ERROR)
} else {

if (year < 50)
year = year + 2000

else if (year < 100)
year = year + 1900

Formula from Van Flandern & Pulliken
Valid for dates after March 1900
date = 367 * year - 7 * (year + (month + 9) / 12) / 4 +

275 * month / 9 + day + 1721014
call printf ("%d%d%d is julian date %d\n")
call pargi (month)
call pargi (day)
call pargi (year)
call pargi (date)

}
}

end
(Continued...)

Error Handlers 153

Example 3.5 (Continued): Using the errcode and erract Procedures.

Error Handlers

In addition to handling an error locally with an iferr block, it is also
possible to handle an error globally by posting an error handling procedure.
The purpose of posting an error handling procedure is to restore the com-
puter to a known state when a program exits abnormally with an error.
Error handlers can be posted with onerror or xwhen. Error handlers
posted with onerror are called whatever the type of error that occurred.
Also, the program will not continue executing after an error handler is
called. Error handlers posted with xwhen are associated with a particular
error code and execution of the program will continue after the error han-
dler exits.

procedure parse_date (line, month, day, year)

char line[ARB] # i: String containing date
int month # o: Month
int day # o: Day
int year # o: Year (0 <= year <= 99)
#--
int ic, nc, idate, date[3]

int ctoi

begin
ic = 1
do idate = 1, 3 {

nc = ctoi (line, ic, date[idate])
if (nc == 0)

call error (1, "Part of date is missing")
while (line[ic] < 0 || line[ic] > 9) {

if (line[ic] == EOS)
call error (1, "Part of date is missing")

ic = ic + 1
}

}
month = date[1]
day = date[2]
year = date[3]

end

154 Chapter 3: Error Handling

Table 3.3: Error Handlers.

The procedureonerror() has a single argument, the name of the
error handling procedure. The error handling procedure must be declared
external with theextern statement. If an error occurs in the program after
the error handling procedure is posted, the error handling procedure will be
called before the normal program cleanup. The error handling procedure
will be passed a single argument, the error code passed to the error proce-
dure. Other information necessary for the error handling procedure should
be passed through the common block.

The following example shows how an error handling procedure is
posted by onerror and what it looks like. The first procedure,
term_init, opens the terminal for reading and writing and puts the
terminal in raw mode. The second procedure,term_end, closes the
terminal and restores the terminal from raw mode. Since leaving the
terminal in raw mode after the program exits will cause a lot of problems,
term_init posts an error handling routine to restore the terminal. The
error handling routine simply calls the normal exit procedure,term_end.
Note the file descriptors are set toNULL after they are closed. This is so
that if an error occurs in the program afterterm_end is called, the error
handling routine will not try to close the same file descriptors twice.

Call Error Handling

onerror (proc) Post an error handler

xwhen (signal, handler, old_handler) Post and error handler

zsvjmp (jumpbuf, status) Save system state

zdojmp (jumpbuf, code) Jump

Error Handlers 155

Example 3.6: An Error Handling Procedure.

include <fset.h>

TERM_INIT -- Initializa the terminal for raw mode i/o

procedure term init (in, out)

int in # o: File descriptor used to read terminal
int out # o: File descriptor used to write to terminal
#--
int ttyin, ttyout
common /term/ ttyin, ttyout

extern term_error
int ttopen()

begin
Open f ile descriptors used for terminal i/o

in = ttopen ("dev$tty', READ_ONLY)
out = ttopen ("dev$tty", APPEND)

ttyin = in
ttyout = out

Put terminal in raw mode

call fseti (ttyin, F_RAW, YES)

Set up error exit routine

call onerror (term_error)

end

procedure term_end()

#--
int ttyin, ttyout
common /term/ ttyin, ttyout

begin
if (ttyin != NULL) {

call fseti (ttyin, F_RAW, NO)
call close (ttyin)
ttyin = NULL

}
if (ttyout != NULL) {

call close (ttyout)
ttyout = NULL

}
end (Continued...)

156 Chapter 3: Error Handling

Example 3.6 (Continued): An Error Handling Procedure.

There are two kinds of errors that can occur during the execution of a
program,synchronous andasynchronous errors. Synchronous errors occur
when the task calls theerror() procedure. These are synchronous errors
because the task is in a known state when the error condition occurs. As a
result, error handling is relatively simple. Synchronous errors can be
caught by aniferr block, as described previously. Asynchronous errors,
also known as exceptions, occur when the hardware detects an illegal con-
dition. Because these errors are detected by the hardware and not by the
program, the program is in an unknown state when the error occurs. This
makes error handling more difficult. IRAF divides all asynchronous errors
into four kinds: access violations, arithmetic errors, interrupts, and inter-
process communication errors. IRAF has a default exception handler for all
asynchronous errors. The default exception handler does a non-local jump
to the IRAFmain routine, prints an error message, performs task cleanup
such as closing files, and exits normally. If this default behavior is not suffi-
cient, a program can post its own error handler by callingxwhen.

xwhen takes three arguments. The first two are inputs and the third is
an output. The two inputs are a symbolic constant indicating the error to be
trapped and the address of the error handling procedure. The symbolic con-
stants are defined inxwhen.h. The address of a procedure is computed
from the functionlocpr. The output is the address of the old error han-
dling procedure. This is provided so that the program can restore the old
error handler later or so that it can chain error handlers by calling the old
error handler when the error handler exits. The error handling procedure
has two arguments. The first is an input, the symbolic constant representing
the error code. The second is an output, the address of error handler to call
after the error handler returns. If the error handler does not chain to another
error handler, the second parameter should be set to the symbolic constant
X_IGNORE.

TERM_ERROR -- Procedure called on error exit

procedure term_error (status)

int status # i: Error code
#--

begin
if (status > 0)

call term_end
end

Error Handlers 157

Usually an error handler resumes execution of a program by performing
a non-local jump. A non-local jump is performed by calling two proce-
dures,zsvjmp andzdojmp. Zsvjmp saves the current state of the com-
puter in an array. The length of this array is hardware dependent and is
specified by a symbolic constant inconfig.h. Zdojmp takes the array
generated byzsvjmp and uses it to restore the computer state to what it
was whenzsvjmp was called. Thus the program callszdojmp and
returns fromzsvjmp. Zsvjmp has a second argument,status, which
indicates whether the return fromzsvjmp is a normal return or a result of
a call ofzdojmp. The value returned fromzsvjmp is the second argu-
ment ofzdojmp or OK if zdojmp was not called. When using non-local
jumps, the condition which caused the error must not be repeated or the
program will go into an infinite loop.

 Example3.7 shows how to post an error handler withxwhen. Only
two of the four asynchronous errors are trapped, access violations and
arithmetic errors. The old error handlers are saved in local variables so that
they can be restored at the end of the subroutine. The system state is saved
by procedurezsvjmp. The length of the array is given by a symbolic con-
stant defined in the header fileconfig.h. The procedure then calls
do_cmp, which executes the command read from the file. If an access vio-
lation or arithmetic error occurs while the command is being executed, the
program will callerr_cmd. This procedure restores the system state by
callingzdojmp. The array with the system state is passed through a com-
mon block. The program then returns fromzdojmp and prints the error
message.

158 Chapter 3: Error Handling

Example 3.7: Posting an Error Handler with xwhen .

include <xwhen.h>
include <conf ig.h>

BATCH_CMD-- Execute a series of commands in a f ile

procedure batch_cmd (f ile)

char f ile[ARB] # i: File name
#--
int jumpbuf[LEN_JUMPBUF]
common /jmpcom/ jumpbuf

char command[SZ_LINE]
int fd, nc, status
pointer acv_handler, arith_handler, junk

extern err_cmd
int open(), geline()
pointer locpr()

begin
Open batch f ile

fd = open (f ile, READ_ONLY, TEXT_FILE)

Post error handlers

call xwhen (X_ACV, locpr(err_cmd), acv_handler)
call xwhen (X_ARITH, locpr(err_cmd), arith_handler)

repeat {
call zsvjmp (jumpbuf, status)
if (status != OK) {

call printf (STDERR, "Error in following command:\n")
call printf (STDERR, "%s\n')
call pargstr (command)
call f lush (STDERR)

}
Exit on end of f ile, skip blank lines
nc = getline (fd, command)
if (nc == EOF)

break
else if (nc == 1)

next
Strip trailing newline from command
command[nc-1] = EOS
call do_cmd (command)

}
Restore old handlers
call xwhen (X_ACV, acv_handler, junk)
call xwhen (X_ARITH, arith_handler, junk)

end (Continued...)

Error Handlers 159

Example 3.7 (Continued): Posting an Error Handler with xwhen.

ERR_CMD -- Error handler for batch processor

procedure err_cmd (code, nxt_handler)

int code # i: Error code which triggered this exception
int nxt_handler # o: Handler called after this handler exits
#--
int jumpbuf[LEN_JUMPBUF]
common /jmpcom/ jumpbuf

begin
Resume execution at zsvjmp
nxt_handler = X_IGNORE
call zdojmp (jumpbuf, code)

end

160 Chapter 3: Error Handling

Program Structure 161

161

C H A P T E R 4 :

Making a
Task

This chapter describes how to make SPP source into a working pro-
gram. In most cases, this means creating an IRAF task. That is, a command
to be executed in the IRAF cl. Inherent in creating the task is compiling and
linking the source to create an executable program. We also describe the
conventional structure of packages of tasks in the cl.

Program Structure

An SPP source file may contain any number ofprocedure declara-
tions, zero or onetask statements, any number ofdefine or include
statements, and any number ofhelp text segments. By convention, global
definitions and include file references should appear at the beginning of the
file, followed by the task statement, if any, and the procedure declarations.

The task Statement
Thetask statement is used to make an IRAF task. That is, a command

recognized in the cl as an executable program. Primarily, this is accom-
plished with thetask statement, part of the SPP code. A file need not con-
tain a task statement, and may not contain more than a single task
statement. Files without task statements are separately compiled to produce
object modules, which may subsequently be linked together to make a task,
or which may be installed in a library. A singlephysical task (ptask) may
contain one or morelogical tasks (ltasks). These tasks need not be related.
Several ltasks may be grouped together into a single ptask merely to save

162 Chapter 4: Making a Task

disk storage, or to minimize the overhead of task execution. Logical tasks
should communicate with one another only via disk files, even if they
reside in the same physical task.

task ltask1, ltask2, ltask3 = proc3

Thetask statement defines a set of ltasks, and associates each with a
compiled procedure (see Example4.1). If only the name of the ltask is
given in the task statement, the associated procedure is assumed to have the
same name. A file may contain any number of ordinary procedures which
are not associated (directly) with an ltask. The source for the procedure
associated with a given ltask need not reside in the same file as the task
statement. An ltask associated proceduremust not have any arguments. An
ltask procedure gets its parameters from the cl via the cl interface. Most
commonly used are theclgetT() procedures. TheclputT() proce-
dures may be used to change the values of parameters.

Example 4.1: Making an IRAF Task.

An IRAF task be run by the cl or called from the command interpreter
provided by the host operating system (the shell or DCL for example) with-
out change. Parameter requests and I/O to the standard input and output
will function properly in both cases. When running without the cl, of
course, the interface is much more primitive. To run an IRAF task directly,
without the cl begin by simply running the program. Such stand-alone
operation is especially useful when debugging. The task will sense that it is
being run without the cl and issue a prompt, see Example4.2.

task alpha, beta epsiol=eps

procedure alpha()

int npix, clgeti ("npxi")
real lcut, clgetr()
char file[SZ_FNAME]

begin
npix = clgeti ("npix")
lcut = clgetr ("lower_cutoff")
call clgstr ("input_file", file, SZ_FNAME)
.
.

Compiling and Linking 163

Example 4.2: Parameter Prompting.

Every IRAF task has some special commands built in. The command ?
will list the names of the ltasks recognized by the interpreter. The com-
mand bye is used to exit the interpreter, returning to the host command
interpreter. To execute a host command at the > prompt, precede the com-
mand by an exclamation point (!).

Compiling and Linking

The steps necessary to transform SPP code into a working program are:

1. Preprocesses SPP to Ratfor and then to Fortran

2. Translate Ratfor to Fortran

3. Compile Fortran to object code

4. Link object with IRAF and system libraries resulting in executable
binary

These could be performed individually and manually. However, to pro-
vide a simple and portable mechanism (remember that the goal is for IRAF
to be host independent), IRAF provides tools to do this. While the tools are
straightforward for simple cases, they provide the power to handle more
sophisticated operations.

mkpkg
The mkpkg utility is used to make or update IRAF packages or libraries.

It is the highest level means of compiling and linking in the IRAF environ-
ment. There is a mkpkg command available in the cl as well as the host
environment. Usage is identical in either case, except that the details of
when a particular argument may need to be quoted will vary depending on

> ?
alpha beta epsilon
> alpha
npix: (response)
lower_cutoff: (response)
input_file: (response)

ltask alpha continues
> bye

164 Chapter 4: Making a Task

the command language used. It is analogous to themake utility in Unix in
that it not only performs compilation and linking, but it also performs
enough revision control to perform only the needed updates. While mkpkg
uses several command line options to control its operation, the particular
actions to perform are specified in a text file, themkpkg file.

This section provides only the briefest introduction to mkpkg. For a
complete discussion see the help pages in the cl by typinghelp mkpkg.
mkpkg provides two major facilities: a library update capability and a

macro preprocessor. The macro preprocessor provides symbol definition
and replacement, conditional execution, and a number of built-in
commands. The usefulness of these facilities is enhanced by the ability of
mkpkg to update entire directory trees, or to enter the hierarchy ofmkpkg
descriptors at any level. For example, typingmkpkg in the root directory
of IRAF will make or update the entire system, whereas in theiraf$sys
directory mkpkg will update only the system libraries, and in the
iraf$sys/fio directory mkpkg will update only thefio portion of the
system librarylibsys.a.

The mkpkg utility is quite simple to use to maintain small packages or
libraries, despite its full complexity of the discussion which follows. The
reader is encouraged to study several examples of working mkpkg files
before reading further; examples will be found throughout the IRAF sys-
tem. The mkpkg files for applications packages tend to be very similar to
one another, and it is quite possible to successfully copy and modify the
mkpkg file from another package without studying the reference informa-
tion given here. A very simple mkpkg file is shown below:

$omake imtoal.x
$link imtoal.o

This will compile and link the SPP program in the file named
imtoal.x, resulting in an executable program in the fileimtoal.e.
Note the$ characters beginning the lines. The source file (imtoal.x) is
assumed to have atask statement. This type of mkpkg file would be used
for the most simple applications with a small number of procedures in one
or at most a few source files and requiring no libraries other than the IRAF
system libraries. A slightly more complicated example (Example4.3)
maintains a library for a small package of tasks.

Compiling and Linking 165

Example 4.3: MKPKG File for Maintaining Small Library.

This introduces two features ofmkpkg: calling modules and maintain-
ing a library. The$call statement allows different blocks of statements to
be executed. These are named by labels terminated by a colon. Note that
each module block must terminate with a semicolon. Otherwise, the fol-
lowing block will also be executed. A block may also be called directly as
an entry point by specifying the label name on themkpkg command line,
for example:

mkpkg update

The $update command maintains the library of procedures for the
package (tutor in this case). The labeltutor.a delimits the “depen-
dencies” section which lists include files used by each source file. A source
file will be compiled if either the source itself or any of the include files
upon which it depends has changed since the last update. Note also the-o
option on the$link statement, specifying the name of the output execut-
able binary file. A library may include references to libraries in other direc-
tories, using the@ syntax. These are mkpkg file in the specified directory. A
$link statement may reference other libraries in addition to the implicit
IRAF system libraries and local libraries defined in the current mkpkg. If
these reside in the IRAF system (or an external package) library directory,
they may be referenced using a-l prefix. For example:

$link x_stplot.o stplot.a -ltbtables -lxtools -o xx_stplot.e

$call relink
$exit

relink:
$update tutor.a
$call linktutor
;

linktutor:
$omake x_tutor.x
$link x_tutor.o tutor.a -o xx_tutor.e
;

tutor.a:
arrows.x <gset.h>
bones.x <imhdr.h>
filter.x <imhdr.h>
hello.x <gset.h>
;

166 Chapter 4: Making a Task

Most often, an installed package will maintain binary executables in a
common directory. These are maintained using mkpkg with the$move
command:

install:
$move xx_stplot.e stsdasbin$x_stplot.e
;

This example is from the STSDAS external package, hence the symbol
stsdasbin pointing to the location of the binary. Note that the execut-
able is renamed in the move. The original has a prefixxx_ while the target
file has the prefixx_. This is conventional for tasks installed in packages.
This permits the package to be remade without disturbing the installed
binary until necessary. Even though the binaries are installed in a directory
separate from the package directory, the tasks are defined pointing to the
package directory as the location of the executable.

xc
The xc utility is a machine independent program for compiling and link-

ing IRAF tasks or files. The xc utility may also be used to compile or link
non-IRAF files and tasks. The VMS version of xc supports all of the impor-
tant flags except-D which VMS C doesn’t support in any way. It can be
used to generate Fortran from SPP or Ratfor code, to compile any number
of files, and then link them if desired. xc accepts and maps IRAF virtual
filenames, but since it is a standalone utility (i.e., it need not run in the cl),
the environment is not passed, hence logical names for directories cannot
be used. Table 4.1 shows the IRAF virtual file name extensions that are
supported by xc:

Compiling and Linking 167

Table 4.1: XC-supported Virtual File Name Extensions.

xc is available both in the cl, via the foreign task interface, and as a stan-
dalone task callable in the host system. Usage is equivalent in either case.
The simple example below compiles and links the source filemytask.x
to produce the executablemytask.e.

xc mytask.x

The next example compiles but does not linkmytask.x and the sup-
port fileutil.x.

xc -c file.x util.x

Now link these for debugging and link in the librarylibdeboor.a
(the DeBoor spline routines in thelib directory).

xc -x file.o util.o -ldeboor

xc is often combined with mkpkg to automatically maintain large pack-
ages or libraries. For complete information onxc see the help pages in the
cl by typinghelp xc.

Generic Preprocessor
The generic preprocessor is provided in addition to SPP to convert a

generic operator into a set of type specific operators. Since Fortran requires
that the data types of the calling and called procedure arguments match, it
is the programmer’s responsibility to ensure this. The generi preprocessor

Extension File Type

.x SPP code

.r Ratfor code

.f Fortran code

.c C code

.s Macro assembler code

.o Object module

.a Library file

.e Executable image

168 Chapter 4: Making a Task

makes this easier. By coding only generic operators, the programmer only
has to maintain a single piece of code, reducing the possibility of an error,
and greatly reducing the amount of work.

Note that this section is taken substantially verbatim from the help text
for thegeneric task. Typehelp generic in the cl to see it. The term
“operator” here in general refers to an SPP procedure or function. The
generic preprocessor takes as input files written in either the IRAF SPP
language or C with embedded preprocessor directives and keywords. The
calling sequence for the preprocessor (on the Unix system) is as follows:

generic [-t types] [-p prefix] [-o outfile] file [file...]

Any number of files may be processed.

Flags
The following (optional) flags are provided to control the types and

names of the generated files:

• -k Allow the output files generated bygeneric to overwrite
(clobber) any existing files.

• -o If an output filename is specified with the -o flag, only a single
input file may be processed. Any$t sequences embedded in the output
file name will be replaced by the type “suffix” character to generate the
filenames of the type specific files in the generic family. If no $t
sequence is given, the type suffix is appended to the filename. If no -o
output filename is given, the names of the output files are formed by
concatenating the type suffix to the root of the input filename.

• -p An optional prefix string to be added to each file name generated.
Provided to make it convenient to place all generated files in a subdirec-
tory. If the name of the file(s) being preprocessed isaadd.x, and the
prefix is d/, the names of the generated files will bed/aadds.x,
d/aaddi.x, d/aaddl.x, and so on.

• -t Used to specify the data types of the files to be produced. The
default value issilrdx, meaning types SHORT through COMPLEX.
Other possible types arebu, i.e., unsigned byte and unsigned short. The
generic preprocessor does not support type boolean.

Directives
The action of the preprocessor is directed by placing$xxx directives in

the text to be processed. The identifiersINDEF and PIXEL are also
known to the preprocessor, and will be replaced by their type specific
equivalents.INDEF will be replaced byINDEFS, INDEFI, etc., and

Compiling and Linking 169

PIXEL will be replaced byshort, int, real, etc. in the generated text.
Comments (#... or/*...*/), quoted strings ("...") and escaped lines (^%)
are passed on unchanged.

The generic operator shown in Example4.4 computes the square root of
a vector. The members of the generic family would be calledasqrs,
asqri, and so on.

Example 4.4: Generic Operator.

The operators are explained in the following list.

• $/text/ - The text enclosed by the matching slashes is passed through
unchanged.

• $t - The lowercase value of the current type suffix character (one of the
charactersbucsilrdx).

• $T - The uppercase value of the current type suffix character (one of the
charactersBUCSILRDX).

• digits$f - Replaced bydigits.0 if the current type is real, bydigits
.0D0 if the current type is double, by(digits,digits) if the type is com-
plex, or bydigits for all other datatypes.

• $if - Conditional compilation. Two forms of the$if statement are
implemented:

- $if (datatype == t) or
$if (datatype != t) wheret is one or more of the data type
characters (s, i, l, r, d, etc.).

ASQR -- Compute the square root of a vector (generic)

procedure asqrt$t (a, b, npix)

PIXEL a[npix], b[npix]
int npix, i

begin
do i = 1, npix {

if (a[i] < 0$f || a[i] == INDEF)
b[i] = INDEF

else {
$if (datatype != rdx)
b[i] = sqrt(double(a[i]))

$else
b[i] = sqrt(a[i])

$endif
}

}
end

170 Chapter 4: Making a Task

- $if (sizeof(t
1
) op sizeof(t

2
)) wheret

1
and t

2
 are type

suffix characters (silrd, etc.), and whereop is one of the rela-
tional operators==, !=, <=, <, >=, or>.

Nesting is permitted. Conditional statements need not be left justified,
i.e., white space may be placed between the beginning of the line (BOL)
and a$xx preprocessor directive.

• $$if - Replaced by$if. Not evaluated until the second time the file is
processed. These may include an$else or $$else block executed if
the$if condition was false and should be terminated by an$endif or
$$endif.

• TY_PIXEL - Replaced byTY_INT, TY_REAL, and so on.

• SZ_PIXEL - Replaced bySZ_INT, SZ_REAL, and so on.

• PIXEL - Replaced by the datatype keyword of the file currently being
generated (int, real, etc.).

• XPIXEL - Replaced by the defined type (XCHAR, XINT, etc.). Used in
generic C programs which will be called from the subset preprocessor,
and which must manipulate the subset preprocessor datatypes.

• $PIXEL - Replaced by the stringPIXEL (used to postpone substitution
until the next pass).

• INDEF - Replaced by theINDEF symbol for the current data type
(INDEFS, INDEFI, INDEFL, INDEF, orINDEFX).

• $INDEF - Replaced by the stringINDEF.

Doubly Generic Operators
The preprocessor can also be used to generate doubly generic operators

(operators which have two type suffixes). A good example is the type con-
version operatorachtxy, which converts a vector of typex to a vector of
typey. If there are seven datatypes (c, s, i, l, r, d, x), this generic family
will consist of 49 members. Doubly generic programs are preprocessed
once to expand the first suffix, then each file generated by the first pass is
processed to expand the second suffix. On the Unix system, this might be
done by a command such as

generic acht.x; generic -p dir/ acht[silrd].x
rm acht[silrd].x

This would expandacht in the current directory (generating five files),
then expand each of theacht$t files in the subdirectorydir/, creating a

Compiling and Linking 171

total of 25 files in the subdirectory. The final command removes the 5 inter-
mediate files.

For an example of double generic code, see source for thevops proce-
dure familyacht() in vops$acht.gx.

Parameter Files
Each logical task that reads parameters from the cl usingclio may spec-

ify attributes of those parameters using aparameter file. Parameter
attributes include the name, data type, default value, and others. The file is
a text file created by the programmer and should be located in the same
directory as the physical task. There is one parameter file for each logical
task. Its root name is the same as the name of the associated logical task
and there is an extension.par. Each task parameter is described by an
entry in the parameter file consisting of positional fields separated by com-
mas:

name,type,mode,value,minimum,maximum,prompt

All of the fields aftervalue are optional. Fields may be omitted with
adjacent commas.

• name - The parameter name as known to the cl and to the application
task. This is the value of the string used in theclio clgetT() and
clputT() procedures. Examples of code to read task parameters are in
“Interaction with the cl — clio” on page45.

• type - The data type of the parameter. That is, the type as known to the
cl. Note that thisneed not match the data type of the corresponding SPP
variable used in the application, but it makes sense to do so. This
attribute takes a string value representing the type.

172 Chapter 4: Making a Task

Table 4.2: cl Parameter Data Types.

Note that there is no distinction between sizes of numeric parameters; i.e.,
there is no concept of a “short” integer or a “double precision” floating
point parameter. The character* preceding a type attribute indicates a “list
structured” parameter. The cursor parameters must be declared as list struc-
tured:*gcur and*imcur. A pset specifies a pointer to another parameter
file. See the documentNamed External Parameter Sets in the CL [Tody86]
for a complete description (on line in the IRAF filedoc$pset.ms).

• mode - The manner in which the cl handlesprompting andlearning of
the parameter.

- q - Query the user each time. Prompt for the parameter value even
if the default is not null.

- l - Learn the value of the parameter. Store the value as the new
default value.

- a - Automatically take the mode of the next higher level in the cl,
such as the task, package or the cl itself.

- h - Hide any prompting for the parameter value unless the cl cannot
resolve the default value.

• value - The default or initial value for the parameter.

• minimum - The minimum acceptable value for the parameter. If the
entered value is smaller, the cl will prompt again. In addition, a string

String Value Data Type

b Boolean

i Integer

r Floating point

s String

f File name

struct Structure

gcur Graphics cursor

imcur Image cursor

pset Parameter set

Package Structure 173

type parameter may be defined with an “enumeration string” as the min-
imum value. The parameter’s value may then take ononly one of the
enumerated values. The enumeration string is enclosed in quotes and
each enumerated value should be separated by pipe characters (|), for
example:

color,s,h,"white","white|black|red|green|blue",,
"Graphics color"

• maximum - The maximum acceptable value for the parameter. If the
entered value is larger, the cl will prompt again.

• prompt - The string printed by the cl as part of the prompt to describe
the parameter. This may be enclosed in double quotes, required if the
string contains commas.

There are other fields as well that are slightly beyond this brief explana-
tion. For a more detailed explanation of parameter files and parameter
fields, see theCL Programmer’s Manual [Downey82], a copy of which is
on line in the fileiraf$doc/clman.ms.

Package Structure

Tasks in IRAF (and external packages such as STSDAS) are organized
by package in the cl. The structure directories containing the source and
run-time files reflects the package structure apparent from the cl. For exam-
ple, in the case of STSDAS, each package resides in a directory under the
stsdas root directory just as the STSDAS packages are organized under
thestsdas package in the cl. There are several files common to the pack-
age as a whole and several similar files required for each task in the pack-
age. These files need to be modified when installing a new task. The
required common files in the package directory are:

• package.cl - Package cl procedure, cl task definitions

• x_package.x - SPP task definitions

• mkpkg - How to build the package

In the above file names, the name of the package is used in place of
package. For example, theplaypen package in STSDAS is in the direc-
tory stsdas$pkg/playpen and the procedure script is calledplay-
pen.cl. In addition, documentation files exist in the package level

174 Chapter 4: Making a Task

directory as well as adoc directory containing individual help files for the
tasks in the package.

• package.hd - Help database pointers

• package.hlp - Package level help

• package.men - Package menu, one line task descriptions

• doc - Directory containing task help files

Tasks in the Package
Each task has additional files, the type of which depends on the nature

of the task. These files would be added when you install a new task. Each
task must also have entries in the package files. A cl procedure task
requires only atask.cl file in the package directory, containing the cl
statements and parameter definitions. For example,disconlab.cl in
theplaypen package. It also requires atask.hlp file in thedoc subdi-
rectory. An SPP (physical) task requires SPP source, at least one source
file, by convention calledt_task.x (with task replaced by the task name)
playpen$t_wcslab.x, for example. Additional source files may
reside in the package directory or in subdirectories. The task may use an
include (header) file with the nametask.h, playpen$wcslab.h, e.g.
Each task requires a parameter file (unless it is a script, defined by a.cl
file), task.par, containing definitions of the task parameters, such as
playpen$wcslab.par. Thedoc directory contains the task help files,
one for each task in the package.

Implementation
The procedure, then, is to develop the application in a private directory

with a structure similar to the intended target package. Development
should be done in a local user directory rather than the system directories,
not even the development system. Use an existing package as an example
of how to proceed. When you are ready to install the package, copy the task
files to the intended package directory and edit the existing package files to
include references to the new package. Runmkpkg to rebuild the package
with the changes (the added task). When you are satisfied that things work,
runmkpkg install to move the executable to the appropriate binaries
directory.

Language Definitions 175

A P P E N D I X A :

Predefined
Constants

The SPP language includes a number of predefined symbolic con-
stants and macro definitions. These allow SPP programs to use keyword
names for commonly used values. Included are various machine dependent
constants describing the hardware and data types. Other symbolic constants
are used for basic file I/O. All predefined constants are of type integer. The
include files described here are automatically included when an SPP pro-
gram is compiled.

Language Definitions

The value of these definitions may vary from one machine and host
operating system to another. SPP code using the symbolic constants need
not be modified, however, when porting software. The include file defining
these macros ishlib$iraf.h. However, it is included implicitly by xc
and the definitions are available at all times. You do not need to include it
explicitly.

175

176 Appendix A: Predefined Constants

Generic Constants

Table A.1: Generic Constants.

Constant Meaning

ARB Arbitrary; array dimension

BOF Beginning of file

BOFL Beginning of file

EOF End of file

EOFL End of file

EOS End of string

EOT End of tape

ERR Error status return

NO Opposite of YES (int flag)

YES Opposite of NO (int flag)

OK Status return, opposite of ERR

NULL Invalid pointer

Language Definitions 177

Data Type Sizes
These macros define the sizes of the fundamental SPP data types in units

of char, the smallest addressable word.

Table A.2: Sizes of SPP Data Types.

Data Type Codes
The data type codes are used, for example, in dynamic memory alloca-

tion, in which it is necessary to know how many bytes each value occupies.
The sizes are in units ofchars, where achar usually occupies two
bytes. The lines shown ExampleA.1 will allocate ashort anddouble
buffer, each ofsize elements. The resulting memory buffers will consist
of different numbers of bytes, but will logically contain the same number
of elements.

Macro Size Defined

SZ_BOOL Number ofchars perbool

SZ_CHAR Number ofchars perchar

SZ_SHORT Number ofchars pershort

SZ_INT Number ofchars perint

SZ_LONG Number ofchars perlong

SZ_REAL Number ofchars perreal

SZ_DOUBLE Number ofchars perdouble

SZ_COMPLEX Number ofchars percomplex

SZ_POINTER Number ofchars perpointer

SZ_STRUCT Number ofchars perstruct

SZ_USHORT Number ofchars perushort

SZ_FNAME Maximum number ofchars in a file name

SZ_LINE Maximum number ofchars in a line

SZ_PATHNAME OS dependent file name size

SZ_COMMAND Maximum size of command block

178 Appendix A: Predefined Constants

Example A.1: Using Data Type Codes.

Table A.3: Data Type Codes.

Code Data Type

TY_BOOL Boolean

TY_CHAR Character

TY_SHORT Short integer

TY_INT Integer

TY_LONG Long integer

TY_REAL Single precision real

TY_DOUBLE Double precision real

TY_COMPLEX Complex

TY_POINTER Pointer

TY_STRUCT Structure

TY_USHORT Unsigned short integer (for image I/O only)

TY_UBYTE Unsigned byte (for image I/O only)

pointer sbuf, dbuf
int size
begin

.

.
call malloc (sbuf, size, TY_SHORT)
call malloc (dbuf, size, TY_DOUBLE)
.
.
call mfree (sbuf, TY_SHORT)
call mfree (dbuf, TY_DOUBLE)

end

Language Definitions 179

File and Image I/O
The macros described in this section are used in accessing text files,

binary files, and images.

File Types
The file type specifies the kind of file to be read or written.

Table A.4: File Types.

Macro File Type

TEXT_FILE Plain text (ASCII)

BINARY_FILE Binary, host dependent

DIRECTORY_FILE Directory

STATIC_FILE

SPOOL_FILE Internal, no permanent location

RANDOM

SEQUENTIAL

180 Appendix A: Predefined Constants

File I/O Modes
The mode parameters are used on opening the file and specify the man-

ner in which the file will be accessed.

Table A.5: File I/O Modes.

I/O Streams

Table A.6: I/O Streams.

Parameter I/O Mode

READ_ONLY Read only, no output

READ_WRITE Read and write

WRITE_ONLY Write only, no input

APPEND Append to an existing file

NEW_FILE New file

TEMP_FILE Temporary file, deleted at task end

NEW_COPY Copy of an existing file

NEW_IMTE Alias forNEW_FILE

NEW_STRUCT

NEW_TAPE

Stream Name Contents

CLIN Standard input of the physical task

CLOUT Standard output of the physical task

STDIN Standard input

STDOUT Standard output

STDERR Standard error

STDGRAPH Standard graph (usually a graphics terminal)

STDIMAGE Standard image (usually an image display)

STDPLOT Standard plot (usually a hardcopy plotter)

Language Definitions 181

The following example (ExampleA.2) opens two files. The first state-
ment opens for reading an existing text file whose name is specified in the
char variablefname. The second statement opens a new image whose
name will be the string inimname.

Example A.2: Opening Files.

Indefinites
Indefinite values may be used to flag data for specific purpose, to

exclude from further consideration or indicate an error, for example. Each
SPP data type has its own indefinite value. The actual value of the various
indefinites may be different, so the appropriate one must be used. In addi-
tion, there are macro functions to test values againstINDEF.

int fp # File descriptor
pointer ip # Image descriptor
char fname[SZ_FNAME] # File name
char fname[SZ_FNAME] # Image name

int open()
pointer immap()

begin
.
.
Open the text file
fp = open (fname, READ_ONLY, TEXT_FILE)

Open the image
ip = immap (imname, NEW_FILE, O)
.
.
call close (fp)
call imunmap (ip)

end

182 Appendix A: Predefined Constants

Values

Table A.7: Indefinite Values.

Logical Functions
These macros (Table A.8) define functions to test values against indefi-

nite. There is a macro for each SPP data type. ExampleA.3 shows how to
execute a block of code in the case where a particular value is indefinite.

Table A.8: Logical Functions.

Value Data Type

INDEFS Short integer

INDEFL Long integer

INDEFI Integer

INDEFR Single precision real

INDEFD Double precision real

INDEFX Complex

INDEF Alias forINDEFR

Function Data Type

IS_INDEFS() Short integer

IS_INDEFL() Long integer

IS_INDEFI() Integer

IS_INDEFR() Single precision real

IS_INDEFD() Double precision real

IS_INDEFX() Complex

IS_INDEF() Alias forIS_INDEFR()

Language Definitions 183

Example A.3: Executing Code with INDEF Values.

Pointer Conversion
These macros are used for pointer conversions in data structures. Since

all dynamically allocated arrays share the same memory (implemented by
FortranCOMMON andEQUIVALENCE), the correct offset to data types hav-
ing different word sizes must be computed. These macros perform that
computation. Note that there is noP2I or P2R since these are assumed to
be the same size according to the Fortran standard. See “Macro Defini-
tions” on page16 for more discussion of SPP macros.

Table A.9: Pointer Conversion Macros.

The following example fromlib$gio.h is part of the definition of
the gio data structure that maintains information about a plot. It defines

Macro Purpose

P2C() Convert pointer to character

P2S() Convert pointer to short integer

P2L() Convert pointer to long integer

P2D() Convert pointer to double precision real

P2X() Convert pointer to complex

short sval # A short integer
real rval # A single precision real
.
.
begin

.

.
if (IS_INDEF(rval)) {

If rval is indefinite, execute this block
.
.

}
if (IS_INDEFS(sval)) {

If sval is indefinite, execute this block
.
.

}
end

184 Appendix A: Predefined Constants

(among other things) a string containing a label format. This is stored in a
dynamically allocatedchar array.

Example A.4: GIO Data Structures.

Machine Parameters

These macros relate to values specific to the host system architecture.
These are defined inhlib$mach.h and must be included with the fol-
lowing statement if they are to be used in code:

include <mach.h>

Table A.10: Machine Parameters.

Parameter Contents

SZB_CHAR Machine bytes perchar

SZB_ADDR Machine bytes per address increment

SZ_VMPAGE Page size (1 if no virtual memory)

MAX_DIGITS Maximum digits in a number

NDIGITS_RP Number of digits of real precision

NDIGITS_DP Number of digits of precision (double)

MAX_EXPONENT Maximum exponent, base 10

MAX_EXPONENTR Maximum exponent for single precision real

MAX_EXPONENTD Maximum exponent for double precision real

define GL_AXISWIDTH Memr[$1+16] # linewidth of axis
define GL_TICKLABELSIZE Memr[$1+17] # char size of tick labels
define GL_TICKFORMAT Memc[P2C($1+18)] # printf format of ticks

Machine Parameters 185

Extreme Numbers

Table A.11: Extreme Numbers.

Byte Swapping
 Is byte swapping needed for a 2 or 4 byte MII integer or a 4 or 8 byte

IEEE floating to convert to or from MII format on this machine?

Table A.12: Byte Swapping Boolean Parameters.

Parameter Contents

MAX_SHORT Largest short integer

MAX_INT Largest integer

MAX_LONG Largest long integer

MAX_REAL Largest single precision real; anything larger isINDEF

MAX_DOUBLE Largest double precision real

NBITS_BYTE Number of bits in a machine byte

NBITS_SHORT Number of bits in a short integer

NBITS_INT Number of bits in an integer

EPSILONR Smalleste such that 1 +e > 1

EPSILOND Double precision epsilon

EPSILON Alias forEPSILONR

Parameter Contents

BYTE_SWAP2 Byte swap 2 byte MII integer?

BYTE_SWAP4 Byte swap 4 byte MII integer?

IEEE_SWAP4 Byte swap 4 byte IEEE integer?

IEEE_SWAP8 Byte swap 8 byte IEEE integer?

IEEE_USED Use IEEE?

186 Appendix A: Predefined Constants

Mathematical Constants

Definitions of various mathematical constants are inhlib$math.h.
Use the following statement to use the macros:

include <math.h>

Values (listed in Table A.13) are given to 20 decimal places and therefore
may be assigned toreal or double variables without loss of precision.
However, note that they are not explicitly double precision, in certain
expressions in which implicit data type conversion occurs may result in
truncation of precision. The definitions are from Abramowitz and Stegun,
Handbook of Mathematical Functions, Chapter 1 [Abramowitz65].

Mathematical Constants 187

Table A.13: Mathematical Constants.

 Most of these are constants, except for the macrosRADTODEG and
DEGTORAD which convert between degrees and radians. For example the
following procedure converts angles in an array from radians to degrees:

Constant Value

SQRTOF2

E e

EXP_PI

LN_2 ln2

LN_10 ln10

LN_PI ln

LOG_E log e

PI

TWOPI

FOURPI

HALFPI

SQRTOFPI

RADIAN radian

RADTODEG Convert radians to degrees

DEGTORAD Convert degrees to radians

GAMMA

LN_GAMMA ln

EXP_GAMMA

2

e
π

π

π

2π

4π

π/2

π

180°/ π()

γ Eulers'�Constant()

γ

e
γ

188 Appendix A: Predefined Constants

Example A.5: Converting Radians to Degrees.

Note that one might alternately use avops procedure to accomplish the
same result.

Character and String-Related Definitions

Character T ypes
These macro definitions (Table A.14) test whether a single character

(typechar) is a member of a particular class of characters, lower case let-
ter or white space, for example. They resolve to a logical (bool) value
which may be used in boolean expressions, including conditional state-
ments such aswhile or for. They are defined inlib$ctype.h and, if
they are to be used in code, must be included with the statement:

include <ctype.h>

include <math.h>

procedure vradeg (rads, degs, nelem)

real rads[ARB] # Angles in radians
real degs[ARB] # Angles in degrees
int nelem # Size of array

int i

begin
do i = 1, nelem

degs[i] = RADTODEG(rads[i])
end

Token Definitions 189

Table A.14: Character Types.

Note that these definitions work for ASCII, but not for EBCDIC (IBM).
By using macros, this machine dependent knowledge of the character set is
concentrated into a single file. For example

 for (ip = 1; IS_WHITE(str[ip]); ip = ip + 1)
 ;

Finds the first non-white-space character in the stringstr.

Token Definitions

Tokens are the smallest recognized string fragments such as a word,
number, or operator. The encoded values of the recognized tokens is
defined in the include filelib$ctotok.h. See “Internal Formatting” on
page85.

Macro Definition

IS_UPPER() Upper case letters (A-Z)?

IS_LOWER() Lower case letter (a-z)?

IS_DIGIT() Numeral (0-9)?

IS_PRINT() Printable character (!-~)?

IS_CNTRL() Control character (CTRL-A - CTRL-_)?

IS_ASCII() ASCII character (values 0-127 decimal)?

IS_ALPHA Alphabetic character (A-Z or a-z)?

IS_ALNUM() Alphanumeric character (A-Z, a-z, or 0-9)?

IS_WHITE() White space (space or tab)?

TO_UPPER() Convert to upper case

TO_LOWER() Convert to lower case

TO_INTEG() Convert character to digit

TO_DIGIT() Convert numeral to ASCII value

190 Appendix A: Predefined Constants

Table A.15: Tokens.

VOS Library Includes

Most VOS library package have an associated include file for constants
and structures unique to that package. These are the most commonly
needed include files for various packages.

Table A.16: VOS Library Includes.

Token Value Interpretation

TOK_IDENTIFIER [A-Za-z][A-Za-z0-9_.$]*

TOK_NUMBER 0-9][-+0-9.:xXa-fA-F]*

TOK_OPERATOR All other printable sequences

TOK_PUNCTUATION [:,;] or any control character

TOK_STRING "..."

TOK_CHARCON '\n', etc.

TOK_EOS End of string

TOK_NEWLINE End of line

TOK_UNKNOWN9 Control characters

Package Include Files

etc time.h

fmtio pattern.h, evexpr.h

gio gset.h

imio imhdr.h

"Hello World" 191

A P P E N D I X B :

Examples
Here are a few simple SPP applications. They illustrate a range of

tasks including image I/O, cl I/O, dynamic memory, and graphics,
including cursor interaction. They are complete, including a task statement
to implement cl tasks. More examples are provided in Rob Seaman’s An
Introductory User’s Guide to IRAF SPP Programming [Seaman92].

"Hello World"

One useful way to get started with a language is to build and run a
simple program, before attempting to learn all the details. It often provides
an introduction to the flavor of the language and its syntax and can provide
a template for developing useful applications. Here is the SPP version of
the common “hello world” program. It prints the text “hello world” on
the user’s terminal.

Example B.1: Hello World Example.

The text of this program would be placed in a file with the extension
“.x” and compiled with the command xc (X Compiler) in the host system
or in the IRAF cl as follows:

xc hello.x

The xc compiler will translate the program into Fortran, call the Fortran
compiler to generate the object file (hello.o), and call the loader to link
the object file with modules from the IRAF system libraries to produce the
executable program. xc may be used to compile C and Fortran programs as

Simple program to print "hello, world" on the standard output

task hello # CL callable task

procedure hello() # common procedure

begin
call printf ("hello, world\n")

end

191

192 Appendix B: Examples

well as SPP programs, and in general behaves very much likecc or f77
(note that the-o flag is not required; by default the name of the output
module is the base name of the first file name on the command line). The
-f flag may be used to inspect the Fortran created by the preprocessor; this
is sometimes necessary to interpret error messages from theF77 compiler.
Finally, to run the program, you may define it as a task in the cl by using
thetask statement:

task $hello = hello.e

Then run it by typinghello.

cl Interaction

ExampleB.2 demonstrates simple use ofclio, reading and writing cl
parameters and simpleimio, reading an image. While the application does
little significant, it illustrates a task that analyzes an image and extracts
information from it.

The procedure called by the above procedure to perform the operation
on the images is shown in ExampleB.3.

cl Interaction 193

Example B.2: Simple Use of clio.

Example B.3: Procedure Called by Bones.

include <imhdr.h>

procedure bones ()

This is a skeleton (bare bones) of a task to do something with a
1-dimensional image and get a single value for an answer. It writes
to STDOUT & to a parameter. It gets an arbitrary parameter from the
header and writes to STDOUT. 2 input parameters: image file & header param file

char inimg[SZ_FNAME] # Input image file name
pointer im # Image descriptor
int npts # Number of pixels
pointer line # Pixels
char param[SZ_LINE] # Header parameter name
real parval # Parameter value
real answer # The result
pointer immap(), imglir() # Function declarations
real imgetr()

begin
call clgetr ("image", inimg, SZ_FNAME) # Get input image name
im = immap (inimg, READ_ONLY, 0) # Open image
npts = IM_LEN(im,1) # Assume 1-D image
call clgstr ("param", param, SZ_LINE) # Get header param name
parval = imgetr (im, param) # Get header parameter
call printf ("%s = %f\n")

call pargstr (param)
call pargr (parval)

Read the data into dynamic memory
line = imgl1r (im)
Use data. You can plug in Fortran subroutine for stuff and treat
the first argument as a REAL array
call stuff (Memr[line], npts, answer)
Write answer
call printf ("The answer is: %f\n")

call pargr (answer)
Put answer in cl parameter
call clputr ("answer", answer)
close the image
call imunmap(im)

end

procedure stuff (pixels, npts, answer)

This is a dummy applications routine for the bones task. It just
finds the average of the input pixel vector.
real pixels[ARB]
int npts
real answer
real sigma
begin

call aavgr (pixels, npts, answer, sigma)
end

194 Appendix B: Examples

A Simple Filter

This example (ExampleB.4) illustrates a simplefilter. That is, a task
that takes a file as input and produces a similar but changed file on output.
In this case the input and output are IRAF images and the operation is the
absolute value. Note particularly the use of dynamic memory allocation
and basic image I/O.

A Simple Filter 195

Example B.4: Sample Filter.

include <imhdr.h>

procedure filter ()

Skeleton task to processs a 1-D image and use another file for output. This
type of task is called a filter. The output file is similar to the input file,
but with different values. This task will work with images of any dimensionality.
There are two input parameters: the input file name and the output file name.

pointer sp # Memory stack pointer
pointer if, ofn # File name string pointers
pointer im, om # Image descriptors
int npts, nrow # Number of pixels
int line # Line number
pointer il, ol # Pixels

pointer immap(), imgl2r(), impl2r() # Declare functions

begin
Initialize the dynamic memory stack
call smark (sp)
call salloc (ifn, SZ_LINE, TY_CHAR)
call salloc (ofn, SZ_LINE, TY_CHAR)

Get the input image names
call clgstr ("input", Memc[ifn], SZ_FNAME)
call clgstr ("output", Memc[ofn], SZ_FNAME)

Open the images
im = immap (Memc[ifn], READ_ONLY, 0)
om = immap (Memc[ofn], NEW_COPY, im)

Find the image size (treat it as 2-D image)
npts = IM_LEN(im,1)
nrow = IM_LEN(im,2)

do line = 1, nrow {
il = imgl2r (im, line) # Read data into dynamic memory

Do for each line in image

ol = impl2r (om, line) # Allocate output image line

call fstuff (Memr[il], Memr[ol], npts)
}
call imunmap (im) # Close images
call imunmap (om)
call sfree (sp) # Free dynamic memory stack

end

Do something with data...can be SPP or Fortran subroutine.

procedure fstuff (input, output, npts)

Dummy application routine for filter task--(find absolute value)
real input[ARB], output[ARB]
int npts
begin

call aabsr (input, output, npts) # Use VOPS absolute value procedure
end

196 Appendix B: Examples

Image I/O

The following is a complete example that demonstrates line by line
image I/O by copying an existing image to a new image. Note that the
procedure works the same regardless of the dimensionality and data type of
the images. This is the code for the IRAFimcopy task in theimages
package which is inimages$imutil/imcopy.x. There are comments
scattered interspersed with the code to clarify it.
IM_MAXDIM and other constants used for image I/O are defined in

<imhdr.h>. Other constants such asARB andSZ_FNAME are defined in
iraf.h which needs not be included explicitly.

Example B.5: Image I/O.

include <imhdr.h>

IMG_IMCOPY -- Copy an image. Use sequential routines to permit
copying images of any dimension. perform pixel I/O in the
datatype of the image, to avoid unnecessary type conversion.
procedure img_imcopy (image1, image2, verbose)
char image1[ARB] # Input image
char image2[ARB] # Output image
bool verbose # Print the operations
int npix, junk
pointer buf1, buf2, im1, im2
pointer sp, imtemp, section
long v1[IM_MAXDIM], v2[IM_MAXDIM]

int imgnls(), imgnll(), imgnlr(), imgnld(), imgnlx()
Declare function calls

int impnls(), impnll(), impnlr(), impnld(), impnlx()
pointer immap()

begin
call smark (sp)
call salloc (imtemp, SZ_PATHNAME, TY_CHAR)
call salloc (section, SZ_FNAME, TY_CHAR)

If verbose, print operation
if (verbose) {

call eprintf ("%s -> %s\n")
call pargstr (image1)
call pargstr (image2)

}

Map the input image
im1 = immap (image1, READ_ONLY, 0)

If output has section part, write only image section. Otherwise,
get temporary image & map as copy of existing image. Copy image
image to temporary and unmap images
call imgsection (image2, Memc[section], SZ_FNAME)

(Continued...)

Image I/O 197

imgsection() returns only theimage section from an image file
name. Ifimage2 = mosaic.imh[100:200,150:350], then the
image section is[100:200,150:350] and we want to overwrite this
space with the same space from the input image, i.e., pixels 100 to 200
inclusive in the first axis, and rows 150 to 350 in the second axis. If the
output image already exists, the access mode isREAD_WRITE. If it does
not exist open it as aNEW_COPY of an existing image, passing the open
image descriptor, im1, to immap(). All necessary header information
will be copied.

The arrayv1 keeps track of the current line to read from image1 by
imgnl() and v2 keeps track of the line written toimage2 using
impnl(). amovkl() initializes the vectors with the long integer
constant 1.

The macro defined constantIM_LEN contains the size of the image. It is
defined in<imhdr.h>. It is a vector storing the size of each dimension up
to the maximum number of dimensions supported byimio (seven). There is
a case for each data type to preserve the precision of the pixels.

Example B.5 (Continued): Image I/O.

The pixel type unsigned short (TY_USHORT) will be copied to a buffer
of type long. The routineimgnll() (the last letter denote the pixel type)
returns a pointer inbuf1 that points to the beginning of the current line in
the input image. The routineimpnll() returns a pointerbuf2 that

if (Memc[section] != EOS) {
call strcpy (image2, Memc[imtemp], SZ_PATHNAME)
im2 = immap (image2, READ_WRITE, 0)

} else {
call xt_mkimtemp (image1, image2, Memc[imtemp], SZ_PATHNAME)
im2 = immap (image2, NEW_COPY, im1)

}

Setup start vector for sequential reads and writes
call amovkl (long(1), v1, IM_MAXDIM)
call amovkl (long(1), v2, IM_MAXDIM)
Copy image
npix = IM_LEN(im1, 1)

switch (IM_PIXTYPE(im1)) {
case TY_SHORT:

while (imgnls, (im1, buf1, v1) != EOF) {
junk = impnls (im2, buf2, v2)
call amovs (Mems[buf1], Mems[buf2], npix)

 }
case TY_USHORT, TY_INT, TY_LONG:

while (imgnll (im1, buf1, v1) != EOF) {
junk = impnll (im2, buf2, v2)
call amovl (Meml[buf1], Meml[buf2], npix)

} (Continued...)

198 Appendix B: Examples

points to the beginning of the next line in the output image.amovl()
copiesnpix pixel values from the input buffer to the output one. The input
and output buffers inMeml[] have already been allocated in memory by
imgnll() andimpnll(). The loops will be repeated until all the lines
have been copied, in which case anEOF is returned.

Example B.5 (Continued): Image I/O.

Basic Graphics

ExampleB.7, below, demonstrate a very simplegio (IRAF graphics)
application. It draws a box in graphics and writes a text string. It follows
the conventions of most IRAF graphics applications. The graphics device
is specified in the task parameterdevice and the graphics stream is
STDGRAPH. Note thatgopen() returns a pointer and this value is passed
to all subsequent graphics procedures. In addition, the include file
<gset.h> is specified. This containsdefines for gio macros such as
G_TXSIZE.

case TY_REAL:
while (imgnlr (im1, buf1, v1) != EOF) {

junk = impnlr (im2, buf2, v2)
call amovr (Memr[buf1], Memr[buf2], npix)

}
case TY_DOUBLE:

while (imgnld (im1, buf1, v1) != EOF) {
junk = impnld (im2, buf2, v2)
call amovd (Memd[buf1], Memd[buf2], npix)

}
case TY_COMPLEX:

while (imgnlx (im1, buf1, v1) != EOF) {
junk = impnlx (im2, buf2, v2)
call amovx (Memx[buf1], Memx[buf2], npix)

}
default:

call error (1, "unknown pixel datatype")
}
Unmap the images
call imunmap (im2)
call imunmap (im1)
call xt_delimtemp (image2, Memc[imtemp])

end

Basic Graphics 199

Example B.6: Basic Graphics.

include <gset.h>

procedure hello ()

HELLO -- Demonstrates simple GIO: Draws a box and a text string

pointer gp # Graphics descriptor
char device[SZ_LINE] # Device name string
pointer gopen()

begin
Get device name (nominally "stdgraph")
call clgstr ("device", device, SZ_LINE)

Open graphics
gp = gopen (device, NEW_FILE, STDGRAPH)

Set the viewport
call gsview (gp, 0.2, 0.8, 0.2, 0.8)

Set the data window
call gswind ("gp, 0.0, 1.0, 0.0, 1.0)

Draw a box around viewport
call gamove (gp, 0.0, 1.0)
call gadraw (gp, 1.0, 0.0)
call gadraw (gp, 1.0, 1.0)
call gadraw (gp, 0.0, 1.0)
call gadrwa (gp, 0.0, 0.0)

Set graphics parameters: Center text horizontally
call gseti (gp, G_TXHJUSTIFY, GT_CENTER)

Set size of text
call gsetr (gp, G_TXTSIZE, 3.0)

Draw a text string
call gtext (gp, 0.5, 0.5, "Hello World", EOS)

Close graphics
call gclose (gp)

end

200 Appendix B: Examples

Interactive Graphics

This example builds somewhat on the previous example. In addition to
simply writing graphics, it uses theclgcur() procedure to return cursor
coordinates to the application. Depending upon how the task is run, this is
resolved in various ways. The usual situation is for the task to be run from
the cl with the interactive graphics cursor activated. The user would then
move the cursor and pressing a keyboard key would result in the
coordinates of the cursor being returned to the task.

Theclgcur() procedure is aclio function that returns a value that is
EOF upon the end of cursor interaction. Note that the function call is within
awhile loop that terminates on the valueEOF.

Note also that several cursor keys have been defined for the task. That
is, when the user types that key with the graphics cursor active, the task
performs some function. These functions are in addition to the built-in
functions of the IRAF graphics cursor. The implementation of the cursor
keys is also an example of theswitch ...case syntax.

Interactive Graphics 201

Example B.7: Interactive Graphics.

include <gset.h>

define UP 1
define DOWN 2
define LEFT 3
define RIGHT 4
define DEF_SIZE 0.15

procedure arrows ()

ARROWS -- Demonstrates interactive capabilities of GIO
Draw arrows in cardinal directions at coordinates of cursor.
Optionally, specify size of arrow with a colon command.
Cursor keys recognized:
d Down arrow
l Left arrow
q Quit
r Right arrow
u Up arrow
: Colon command
:s size Change arrow size

pointer gp # Graphics descriptor
char device[SZ_LINE] # Device name string
real wx, wy # Cursor coordinates in WCS
int wcs # Graphics wcs
int key # Cursor key value
char command[SZ_LINE] # Cursor command string
char cmdword[SZ_LINE] # Command word
int ip # Character in string
real xs, ys, size # Arrow size (in NDC)
string coord "coord" # Cursor parameter name
pointer gopen()
int ctowrd(), ctor(), clgcur()

begin
Get graphics device from cl, nominally "stdgraph"
call clgstr ("device", device, SZ_LINE)
Open graphics device
gp = gopen (device, NEW_FILE, STDGRAPH)
Draw coordinate axes to orient ourselves
call glabax (gp, EOS, EOS, EOS)
Set starting arrow size
xs = DEF_SIZE
ys = DEF_SIZE (Continued...)

202 Appendix B: Examples

Example B.7 (Continued): Interactive Graphics

while (clgcur (coord, wx, wy, wcs, key, command, SZ_LINE) != EOF) {
Cursor mode loop. interpret cursor commands until EOF.
Case statement switches on cursor key character value
switch (key) {
case ’d’:

call arrow (gp, DOWN, wx, wy, xs, ys) # Down
case ’l’:

call arrow (gp, LEFT, wx, wy, xs, ys) # Left
case ’r’:

call arrow (gp, RIGHT, wx, wy, xs, ys) # Right
case ’q’:

break # Quit
case ’u’:

call arrow (gp, UP, wx, wy, xs, ys) # Up
case ’:’:

call printf (command) # Parse command
ip = 1
if (ctoword (command, ip, cmdwrd, SZ_LINE) ,+ 0)

next # No command on line
Case switches on 1st char of 1st word on command line
switch (cmdwrd[1]) {
case ’s’: # Change arrow size

if (ctor (bommand, ip, size) > 0) }
call printf ("%f")
call pargr (size)
xs = size
ys = size

}
}

}
}
call gclose (gp) # Close graphics

end (Continued...)

Task 203

Example B.7 (Continued): Interactive Graphics: the Arrow Procedure.

Task

The following code is a task statement that creates a task for the above
procedures.

task arrows,
 bones,
 filter,
 hello

To compile the code, use xc directly or usemkpkg, which also uses xc.
If you extract the SPP code in the previous sections in files named
bones.x, filter.x, hello.x, arrows.x, and x_tutor.x,
respectively, the following command will compile and link them:

xc x_tutor.x bones.x filter.x hello.x arrows.x

producingx_tutor.e as the executable. You can either run this directly
or define tasks in the cl:

task arrows, bones, filter, hello = x_tutor.e

procedure arrow (gp, direc, x, y, xsize, ysize)

ARROW --- Draw arrow as gio marker. 4 predefined markers: arrow pointing
in each cardinal direction. Define mark as polyline to pass to gumark ().

pointer gp # Graphics descriptor
int direc # Arrow direction (parameterized)
real x, y # WCS of arrow center
real xsize, ysize # Arrow size in NDC
define NPTS 5 # Number of points per polyline
define NA 4 # Number of markers
define NA 4 # Number of markers
real px[NPTS,NA], py[NPTS,NA] # Arrow polylines
data px /0.5, 0.5, 0.25, 0.5, 0.75, # Up (X)

0.5, 0.5, 0.25, 0.5, 0.75, # Down
1.0, 0.0, 0.5, 0.0, 0.5, # Left
0.0, 1.0, 0.5, 1.0, 0.5 / # Right

data py /0.0, 1.0, 0.5, 1.0, 0.5, # Up (Y)
1.0, 0.0, 0.5, 0.0, 0.5, # Down
0.5, 0.5, 0.75, 0.5, 0.25, # Left
0.5, 0.5, 0.75, 0.5, 0.25/ # Right

begin
call numark (gp, px[1,direc], py[1,direc], NPTS,

x, y, xsize, ysize, NO)
end

204 Appendix B: Examples

B.12.1 mkpkg
The following is a samplemkpkg file to make the package comprising

the above examples. It creates a library (tutor.a) containing the
procedures and links a single executable (physical task) containing several
logical tasks.

Example B.8: Sample mkpkg File.

$call relink
$exit
update:

$call relink
;

relink:
$update tutor.a
$call linktutor
;

linktutor:
$omake x_tutor.x
$link x_tutor.o tutor.a -o xx_tutor.e

 ;
tutor.a:

Procedure Arguments 205

A P P E N D I X C :

Tips and
Pitfalls

This reference documents the major features of the SPP language.
However, it is necessarily incomplete. For the most complete and
up-to-date details of any specific library package or procedure, consult the
on-line source and documentation. There is high-level documentation in
the IRAFdoc$ directory. The source for each library package described
here,imio, clio, etc., resides in a separate directory in the IRAF hierarchy,
having the name of the package. In addition, a cl environment variable is
defined for each library package. Thus, the source for imio is in the
directoryimio$. There is a directory containing documntation describing
the packages in adoc subdirectory of each library package and the source
also contains documentation.

Procedure Arguments

If a procedure has formal parameters, they should agree in both number
and type in the procedure declaration and when the procedure is called. In
particular, beware ofshort or char parameters in argument lists. An
int may be passed as a parameter to a procedure expecting aSHORT inte-
ger on some machines, but this usage isnot portable, and is not detected by
the compiler. The compiler does not verify that a procedure is declared and
used consistently. Do not use type coercion in procedure actual arguments.
Such as:

call foobar (..., short (intvar), ...)

In some cases, the coercion is not performed in passing the argument to
the procedure. A particular problem is using a literal (quoted) character in
the calling sequenct to a procedure expecting achar such asstridx().
Such a literal is converted into an integer constant. On some systems, it

205

206 Appendix C: Tips and Pitfalls

won’t matter if the called procedure expects a long or short integer, but on
some, it will result in the wrong value passed.

Calling Fortran

Since SPP is preprocessed into Fortran, in most cases, it is quite
straightforward to call an existing Fortran subroutine from an SPP proce-
dure. The most important caution is the case of character strings. SPP
strings are not the same as Fortran strings. SPP strings are implemented as
arrays of integers. However, there are procedures available to transform
between the two:f77pak() converts an SPP string to a Fortran string,
andf77upk() converts a Fortran string to an SPP string. Note that you
must declare the Fortran string in the SPP procedure with a Fortan state-
ment. This is possible with the% escape character as the first character on a
line. This indicates to the xc compiler that the following statement should
not be processed but copied directly to the Fortran code. See ExampleC.9,
below.

Example C.9: Declaring a Fortran String in SPP.

.

.
Declare the Fortran string
%character*8 fstr

Declare the SPP string
char sstr[8]
.
.

Convert the SPP string to a Fortran string
call f77pak (sstr, fstr, 8)

Call the Fortran subroutine
call forsub (fstr, ...)

.

.

Character Strings 207

Character Strings

SPP strings are not scalar variables. Their value cannot be changed by
an assignment statement. Strings are, in fact, arrays of short integers, with
the additional complication of an extra element at the end for the EOS char-
acter. It is possible to declare strings with dynamic memory allocation. In
fact, is a common practice to use stack memory for temporary string stor-
age.

Example C.10: Stacking Memory for Temporary String Storage.

Arrays of Strings
 It is possible to declare an array of strings, but remember that each

string element needs its own EOS character. Typically, the strings would be
allocated dynamically and referenced in a called procedure, as shown in
Example C.11.

pointer sp
pointer infile, outfile
pointer errmsg
.
.
begin

Mark the memory stack
call smark (sp)
Allocate memory for the strings
call salloc (infile, SZ_FNAME, TY_CHAR)
call salloc (outfile, SZ_FNAME, TY_CHAR)
.
.
Get strings from the cl
call clgstr ("infile", Memc[infile], SZ_FNAME)
call clgstr ("outfile", Memc[outfile], SZ_FNAME)
.
.
Free the memory stack
call sfree (sp)

end

208 Appendix C: Tips and Pitfalls

Example C.11: Referencing Dynamically Allocated Strings.

The important points to keep in mind are that strings implemented as
arrays ofchar s (short s), even though they are declared a fixed size,
they may not use the entire declared space. A special character value (EOS,
implemented as ASCIINUL) is used as the string terminator. Most proce-
dures that require strings also take an argument specifying the string
length. This does not mean that the entire declared string will be used, only
the maximum possible string size. There are a few important exceptions.

Characters vs. Strings
Note the distinction between single and double quoted characters. Sin-

gle quotes indicate the ASCII value of a single character and are treated as
an int scalar in processed SPP. Double quoted strings are literal strings
and may only be specified as actual procedure arguments or the object of a
string declaration. Using single quoted characters in place of achar
array can cause unexpected problem, for example in:

stridx (’x’, string)

’x’ is anint , while stridx() expects achar . Other routines with
this problem includeungetc() andputc() . Note that the cast operator

def ine NUM_STR16 # Array size
def ine STR_SIZ 79 # String size

(note odd size to allow for EOS)

pointer strarr # Pointer for array of strings
int arrsiz

begin
arrsiz = (STR_SIZE + 1) * NUM_STR
Allocate string array
call malloc (strarr, arrsize, TY_CHAR)
.
.
call myproc (Memc[strarr], STR_SIZ, NUM_STR)

end

procedure myproc (strarr, strsize, numstr)
char strarr[strsiz,numstr] # Array of strings
int strsiz # String size
int numstr # Number of strings

begin
.
.

end

Formatted I/O 209

char (’x’) does not work! It translates intoint(120) . You should
use something like:

char x_char
 x_char = ’x’
 i = stridx (x_char, string)

Formatted I/O

Newlines are significant. Lines of output, toSTDOUT for example, is
separated by newlines, a carriage return and a line feed. Theprintf()
procedure does not automatically issue a newline with every call. You must
explicitly write the newlines using the\n escape as part of the format
string. Otherwise, your output will be strung together, rather unintelligably.
Actually, this can be useful, as you can use multipleprintf() calls to
build a single line of output. On input, a text file consists of lines delimited
by newlines. The file may be read line by line usinggetline() . The
newline terminating each line is returned as part of the string. Note that
getline() and putline() are two of the procedures dealing with
strings that do not have a string length argument. It is assumed that the
string buffer is allocated with the sizeSZ_LINE .

The % Character
To output a percent character (%) using any of the formatted output pro-

cedures, use two adjacent percent characters,%% in the format string.

 call printf ("Ratio: %f%%\n")
 call pargr (ratio)

Results in:

 Ratio: 12.34%

(assuming the value ofratio is 12.34).

Buffered Output
Standard formatted output is normally buffered. The result is that output

to STDOUT may not appear on the user’s terminal right away. The buffer is
flushed when it is full, at the end of the task, or when it is explicitly flushed.
The buffer may be flushed withf lush() , whose argument is the file

210 Appendix C: Tips and Pitfalls

descriptor of the stream,STDOUT for example. In some cases, particularly
in deing stages of development, it may be desirable to have output appear
more quickly. Rather than usingflush() repeatedly, you may set the fio
parameterF_FLUSHNL to YES with a call tofset(). This advises fio to
flush the buffer whenever it prints a newline character. Thus, output will
appear on every line. Output toSTDERR always flushes on newlines.

Dynamic Memory Allocation

In order to use dynamic memory pointers properly, you must declare at
least onepointer variable in the appropriate procedures. This will gen-
erate the code defining a common block with declarations for all of the
Mem arrays:Memd, Memr, Memi, Mems, etc. Otherwise, you will get a
compiler error complaining of undeclared variables.

Image I/O

 Perhaps the most confusing aspect of image I/O is the rather unintuitive
way images are written inimio. It is necessary to obtain an output pointer
using one of theimp... procedures and then filling in the values in the out-
put buffer. The pixels are not actually written to the output file until the out-
put buffer is flushed or the image is closed. This can, in fact, lead to another
pitfall. If you wish to write and read the same image in the same task, you
must be sure that the pixels are written out before trying to read them in
again. This may be assured with a call toimflush() after filling the out-
put buffer. Alternately, you might close the image usingimunmap() and
then reopen it withimmap(). A brief example may clarify this situation.
The following fragment of code opens an image for read and write access,
writes some pixels and reads them back in.

Image I/O 211

Example C.12: Image I/O.

If you read two lines using arbitrary line I/O with two separate buffer
pointers, the second call may make the first pointerx1 invalid.

x1 = imgl2r (im, i)
x2 = imgl2r (im, i+1)

This applies to output,impl2T() as well as input.

Group Format
One additional wrinkle involves multi-imagegroup format STF

(STSDAS1 format) images. This format allows more than one image in a
single logical image (pair of files; header and pixel file) with a common
image header. It is possible to access more than one image in the group
simultaneously in a task. With imio, each sub-image (sometimes referred to
confusingly as agroup) you need to useimmap() separately. To specify
which image in the set to open, append the image number enclosed in
square brackets to the file name in theimmap() call. The following opens
the second image in a multi-image group format file:

1. For more information about STSDAS, see theSTSDAS Users Guide, available
from the STSDAS Group at STScI.

pointer im, ip
int nx

Map the image
im = immap (image, READ_WRITE, O)

Get the line size
nx = IM_LEN(im, 1)

Map an output buffer
ip = impl2r (im, 1)

Fill the output buffer
call amovkr (1.0, Memr[ip], nx)

Flush the output
call imflush (im)

Read the line back in
ip = imgl2r (im, 1)
.
.

212 Appendix C: Tips and Pitfalls

Example C.13: Opening the Second Group of a Group Format STSDAS Image.

In many cases, it would be up to the user to specify the group number on
the image file name when using the task. There may be cases, however, in
which a task would use specific groups in an image. To create a new multi--
image file, you must specify the total number of images in the set as well as
the image number. ExampleC.14 creates a four image set and opens the
first image.

Example C.14: Creating a Four-Image Set and Opening the First Image.

A slight complication arises when you wish to create a multi-image
group format file and simultaneously access more than one image. In this
case, you must create the image, close it, and reopen the individual images.
Note also that the pixel file willnot be created propeunless a write opera-
tion is performed. This may be done by simply writing a single line before
closing the image.

Get the image name from the cl
call clgstr ("image", image, SZ_FNAME)
Append the "group" number
call strcat ("[2]", image, SZ_FNAME)
Open the image
g1 = immap (image, READ_ONLY, 0)

Get the image name from the cl
call clgstr ("image", image, SZ_FNAME)
Append the "group" number and number of images
call strcat ("[1/4]", image, SZ_FNAME)
Open the image
g1 = immap (image, READ_ONLY, 0)

Logical Flags 213

Example C.15: Accessing More Than One Image in a Multi-Image File.

Logical Flags

In addition tobool data type variables, many SPP programs use the
macro predefined constantsYES andNO as flag or switch values.Note that
these are int constants, not bool s. Thebool literal constants aretrue
andfalse

Get the image name from the cl
call clgstr ("image', image, SZ_FNAME)
call strcpy (image, img1, SZ_FNAME)
Append the "group" number and number of images
call strcat ("[1/4]", img1, SZ_FNAME)
Open the new image
g1 = immap (image, NEW_IMAGE, 0)
IM_NDIM(im) = 2
IM_LEN(im,1) = 512
IM_LEN(im,2) = 512
Write a dummy line to create the pixel f ile
junk = impl2r (image, 1)
Close the image
call imunmap (g1)
Reopen the individual images
call strcpy (image, img1, SZ_FNAME)
call strcat ("[1]", img1, SZ_FNAME)
g1 = immap (img1, READ_WRITE, 0)
.
.
call strcpy (image, img4, SZ_FNAME)
call strcat ("[4]", img4, SZ_FNAME)
g4 = immap (img4, READ_WRITE, 0)

214 Appendix C: Tips and Pitfalls

Identifier Mapping 215

A P P E N D I X D :

Debugging

The SPP preprocessor, xc, recognizes many syntax errors. Needless to
say, not all programming errors will be caught this way. Since SPP is pre-
processed into Fortran, it is useful to know a bit about the resulting Fortran
code in order to find programming errors. The most instructive way to
understand the code is to look at it. Use the-f option of xc to preserve the
Fortran output. Many times errors are apparent in the Fortran code without
having to use a source-level debugger at all.

Identifier Mapping

Since the Fortran produced by xc is Fortran 66, identifier names must be
six characters or fewer, with no special characters such as underscores. SPP
however, permits longer identifier names with the underscore character.
The xc preprocessor maps such names by first removing underscores and
using up to the first five characters of the identifier and the last character.
The xc preprocessor writes a table of the original SPP identifiers and the
mapped Fortran names at the end of the output Fortran as comments. If dif-
ferent SPP identifiers map to the same Fortran identifier, xc issues a warn-
ing that the identifier mapping is not unique and creates a unique identifier
by replacing the last character with a digit in one case.

215

216 Appendix D: Debugging

Dynamic Memory

It is possible to examine the values of dynamically allocated memory.
These are treated as a Fortrancommon block, with all of theMem arrays
equivalenced to a single array. The relevant Fortran code generated is
shown in ExampleD.1.

Example D.1: Fortran Code for Handling Dynamically Allocated Memory.

VMS
The VAX/VMS debugger permits examining theMem arrays. Keep in

mind the manner in which the array was allocated, however. The pointer is
an arbitrary offset into virtual memory. The elements of your array are
located relative to the pointer. The debugger will not know the size of the
array, but you can specify a range of elements to examine. Once the pointer
is dereferenced by passing to a procedure, it is treated as a normal Fortran
array. However, be particularly careful of arrays declared in procedures
with ARB. ARB is a macro that translates into a very large number. If you
examine an array declaredARB without specifying a range of elements, the
debugger will try and list what it thinks are all of the elements of the array.
Remember to specify a range of array elements.

Unix
In the Unixdbx debugger, it is a bit more tedious to examine the con-

tents of a dynamically allocated arrays. You need to specify the memory
location (pointer address) and the data type to display. For example, if a
pointer toMemr is in a variable calledline, then the followingdbx com-
mand will display the first element:

print (line-1)*4/f

logical Memb(1)
integer*2 Memc(1)
integer*2 Mems(1)
integer Memi(1)
integer*4 Meml(1)
real Memr(1)
double precision Memd(1)
complex Memx(1)
equivalence (Memb, Memc, Mems, Memi, Meml, Memr, Memd, Memx)
common /Mem/ Memd

Task 217

To look at thenth element, addn to the word location:

print ((line-1)*4+10)/f

will show the 10th element. The followingdbx initialization file defines
command aliases to help examine contents of theMem buffers. It may be
placed in the file.dbxinit in the Unix root directory.

Example D.2: Unix .dbxinit Debugging File.

The commands are used by specifying the symbol name of the memory
pointer. For example if the SPP code contained:

 call malloc (buf, npix, TY_REAL)
 call myproc (Memr[buf], npix)

Then you could examine the first element of the memory buffer pointed to
by buf with thedbx command:

 memr buf

Task

The single line SPPtask statement results in a very large amount of
Fortran code. This implements a single procedure calledsys_runtask,
which is mapped to the Fortran nameSYSRUK. This is because there is a
great deal of processing dealing with selecting tasks and handling errors.
Normally, there is no need to look at the preprocessed code for the task.
When your task is compiling, you will see this procedure being compiled.
Be aware also that when you are debugging, your top-level applications
procedure is asubroutine of the task, which is, in turn, a subroutine of the
IRAF main procedure. The top level IRAF main is part of the IRAF kernel
and therefore written in C. Most debuggers will somehow make it known
that they are trying to debug C code. This is usually not important.

alias memd "((!:1)-1)*8/g"
alias memi "((!:1)-1)*4/D"
alias mems "((!:1)-1)*2/d"
alias memr "((!:1)-1)*4/f"
alias memc "((!:1)-1)*2/!:2 c"
alias veci "&!:1[!:2]/!:3 D"
alias vecc "&!:1[!:2]/!:3 c"

218 Appendix D: Debugging

 219

A P P E N D I X E :

STSDAS
 Tables

STSDAS tables1 are binary files that contain data in row and column
format. Each column has a name, data type, print format, and unit. All the
values in a given column are of the same data type, but different columns
may have different data types. The column name should be unique within a
table. The print format may be used to display the values but does not
affect the way the values are stored in the table. Theunits string may
contain any information that will fit; calling it “units” is just a suggestion.
A table may also contain header parameters in a format similar to FITS
header keywords.

The data types supported for tables are double precision real, single
precision real, integer, boolean, and text strings. Values are stored in the
table file in the host machine’s binary format. Elements that have not been
assigned values or that have been set to “undefined” are flagged as such in
the table.

The object library specified to xc as-ltbtables contains all the
spp-callable table I/O routines. The include filetbset.h defines
parameters for getting such information as the number of rows or columns
in a table. Some items may also be set. The maximum lengths of column
names and similar values are also specified in that file. Further details are
given below. Thetbpset routine is used to set parameter values, and the
integer functiontbpsta returns values.

A table with more than one column is a 2-D array of values. A 2-D array
can be stored in the file in row or column ordered format. That is, as you
step from word to word in the file, you could be stepping along a row or
down a column. Both options are supported for STSDAS tables. Simple

1. The STSDAS system, including the tables package and libraries for table
manipulation and multigroup access, is available via anonymous ftp tostsci.edu.
If you need more information, contact the STSDAS Group via e-mail to:
hotseat@stsci.edu

219

220 Appendix E: STSDAS Tables

text files in row and column format can also be accessed as tables by the
STSDAS table I/O routines.

The file name for a binary table must include an extension, withtab as
the default. A text table, on the other hand, need not have an extension.
STDIN andSTDOUT may be used for input and output text tables.

The table interface includes routines for accessing table files, columns,
header parameters, table parameters, and table data. The name of each
routine begins with “tb”, the next letter indicates what type of object is
involved (row, column, parameter, etc.), and the last three letters specify
what is to be done (e.g., open, close, get, put). For example,tbtopn
opens a table. The third letter (“t”) implies that the routine applies to a table
as a whole, and “opn” means “open”. Similarly, tbtclo closes a table.
For some routines the last letter indicates the data type of the input or
output buffer. For example,tbegtr operates on a table element (“e”) to
get (“gt”) an element, and the output buffer is of type real (“r”). The
corresponding “put” routine istbeptr. Table E.1 is a list of third letters
and what they refer to:

Table E.1: Table I/O Procedure Naming Conventions.

Table E.2: Procedures to Open and Close Tables.

Letter Object Examples of use

t Table file Open, close, get table name

p Table parameter Number of rows, number of columns

h Header parameter Get or put header parameter

c Column Find, create, get or put column

r Row Get or put values in a row

e Element Get or put a single value

Procedure Description

tp = tbtopn (tablename, iomode, template) Initialize (and open the table if notNEW_FILE or
NEW_COPY)

tbtcre (tp) Create new table (after initializing withtbtopn)

tbtclo (tp) Close a table

 221

ExampleE.1 reads all values from one table column and prints the
values that are defined. If this were in a file calledtest.x, it could be
compiled and linked by typing2:

xc -p stsdas test.x -ltbtables.

task test
include <tbset.h> # defines TBL_NROWS, SZ_COLNAME, etc
procedure test()
pointer tp # pointer to table descriptor
pointer cp # pointer to column descriptor
char intable[SZ_FNAME] # table name
char colname[SZ_COLNAME] # column name
real value # a single value from a table element
int nrows # number of rows in table
int row # loop index for row number
pointer tbtopn()
int tbpsta()
begin
 call clgstr ("intable", intable, SZ_FNAME)
 call clgstr ("colname", colname, SZ_FNAME)
 tp = tbtopn (intable, READ_ONLY, NULL) # open the table
 call tbcfnd (tp, colname, cp, 1) # find the column in the table
 if (cp == NULL) {
 call tbtclo (tp)
 call error (1, "column not found")
 }
 nrows = tbpsta (tp, TBL_NROWS)
 do row = 1, nrows {
 call tbegtr (tp, cp, row, value) # get value in current row
 if (!IS_INDEF(value)) { # is the value defined?
 call printf ("%14.6g\n")
 call pargr (value)
 }
 }
 call tbtclo (tp) # close the table
end

Example E.1: Table I/O Example.

2. Notice that the-p stsdas flag means that you need to have the STSDAS
external package available on your system.

222 Appendix E: STSDAS Tables

Table E.3: Procedures Dealing with Columns.

Table E.4: Table File Operations.

Procedure Description

tbcdef (tp, colptr, colname, colunits,
colfmt, datatype, lendata,
numcols)

Define columns

tbcfnd (tp, colname, colptr, numcols) Find a column from its name

tbcinf (colptr, colnum, colname,
colunits, colfmt, datatype,
lendata, lenfmt)

Get information about a column

int = tbcigi (colptr, param) Get specific info about a numeric
column (e.g. name or data type)

tbcigt (colptr, param, outstr, maxch) Get specific info about a string column
(e.g. name or data type)

Procedure Description

tbtcpy (inname, outname) Copy a table

tbtdel (tablename) Delete a table

tbtren (oldname, newname) Rename a table

int = tbtacc (tablename) Test for the existence of a table

tbtext (inname, outname, maxch) Append default extension (if it’s not already there)

tbtnam (tp, tblname, maxch) Get the name (including extension) of the table

tbtflu (tp) Flush FIO buffer for table

Reading and Writing Data 223

Reading and Writing Data

Three sets of get and put routines are provided for accessing table data.
The “tbe...” routines get or put single elements; that is, values at a specified
row and column. The “tbr...” routines get or put one or more elements in a
single row. The “tbc...” routines get or put values in a single column over a
range of rows. The last (sixth) letter of each routine name specifies the
buffer data type: “t” for a text string, “b” for boolean, “i” for integer, “r” for
real, and “d” for double precision. The data type of the buffer does not need
to be the same as the data type of the table column; the table I/O routines
convert data type when the column and buffer do not match.

ThetbrgtT andtbcgtT routines return a boolean array that indicates
whether the table elements gotten are undefined. A true value means the
table elementis undefined. ThetbegtT routine returns the data
type-specificINDEF value when the table element is undefined. When
writing values into a table, values may be set to undefined by calling
tbrudf. If a row exists, but no value has ever been written to a particular
column in that row, the element at that row and column will automatically
be undefined; that is, it is not necessary to calltbrudf. A row exists if a
value has been put into any column in that row or into a subsequent row
(larger row number).

224 Appendix E: STSDAS Tables

Table E.5: Table Get and Put Procedures.

ExampleE.2 gets two values from each row of a table and copies them
to another table if neither value is undefined. A double-precision buffer is
used so that data of any numerical type will be copied without loss of
precision.

Procedure Data Types Description

tbegtT (tp, colptr, rownum, buffer) b i r d Get a numeric value from the table

tbegtt (tp, colptr, rownum, buffer,
maxch)

Get a string value from the table

tbeptT (tp, colptr, rownum, buffer) t b i r d Put a value into the table

tbrgtT (tp, colptr, buffer, nullflag,
numcols, rownum)

b i r d Get numeric values from a row

tbrgtt (tp, colptr, buffer, nullflag,
lenstr, numcols, rownum)

Get string values from a row

tbrptT (tp, colptr, buffer, numcols,
rownum)

b i r d Put numeric values into a row

tbrptt (tp, colptr, buffer, lenstr,
numcols, rownum)

Put string values into a row

tbcgtT (tp, colptr, buffer, nullflag,
firstrow, lastrow)

b i r d Get numeric values from a column

tbcgtt (tp, colptr, buffer, nullflag,
lenstr, firstrow, lastrow)

Get string values from a column

tbcptT (tp, colptr, buffer, firstrow,
lastrow)

b i r d Put numeric values into a column

tbcptt (tp, colptr, buffer, lenstr,
firstrow, lastrow)

Put string values into a column

tbrudf (tp, colptr, numcols, rownum) Set values in a row to undefined

Reading and Writing Data 225

include <tbset.h>
define NCOLS 2 # number of columns to get
procedure test()
pointer sp # stack pointer
pointer intable, outtable # scratch for table names
pointer ira, idec # scratch for arrays of input values
pointer ora, odec # scratch for arrays of output values
pointer ra_flag # scratch for array of null flags
pointer dec_flag # scratch for array of null flags
char cname[SZ_COLNAME,NCOLS] # column names
pointer itp, otp # pointers to table descriptors
pointer icp[NCOLS] # pointers to column descriptors in input
pointer ocp[NCOLS] # pointers to column descriptors in output
int inrows, onrows # number of rows in input, output tables
int irow # loop index for row number in input table
int orow # row number in output table
int i # loop index
bool nullflag[NCOLS] # null flags for getting info from a row
bool bad # true if any element of nullflag is true
double value[NCOLS] # values gotten from a table
pointer tbtopn()
int tbpsta()
begin
 # Allocate scratch space for table names. We’ll allocate space
 # for column values later, after we know the size of the table.
 call smark (sp)
 call salloc (intable, SZ_FNAME, TY_CHAR)
 call salloc (outtable, SZ_FNAME, TY_CHAR)

 # Get table names.
 call clgstr ("intable", Memc[intable], SZ_FNAME)
 call clgstr ("outtable", Memc[outtable], SZ_FNAME)

 # Get column names.
 call clgstr ("ra_col", cname[1,1], SZ_COLNAME)
 call clgstr ("dec_col", cname[1,2], SZ_COLNAME)

 # Open input table.
 itp = tbtopn (Memc[intable], READ_ONLY, NULL)

 # Find columns in input table. Check if they were found.
 call tbcfnd (itp, cname, icp, NCOLS)
 if (icp[1] == NULL || icp[2] == NULL) {
 call tbtclo (itp)
 call error (1, "column not found")
 }

Example E.2: Copying Columns.

(Continued...)

226 Appendix E: STSDAS Tables

 # Create an output table with the same columns as the input table.
 otp = tbtopn (Memc[outtable], NEW_COPY, itp)
 call tbtcre (otp)

 # Copy header parameters from input to output.
 call tbhcal (itp, otp)

 # Find columns in output table. They will be there since they were
 # in the input table.
 call tbcfnd (otp, cname, ocp, NCOLS)

 # There will be fewer rows in the output table if the columns
 # we’re interested in contain undefined elements.
 inrows = tbpsta (itp, TBL_NROWS)

 # Here are three different ways of copying the values.
 # 1. Copy element by element.
 orow = 0
 do irow = 1, inrows {
 call tbegtd (itp, icp[1], irow, value[1])
 call tbegtd (itp, icp[2], irow, value[2])
 if (!IS_INDEFD(value[1]) && !IS_INDEFD(value[2])) {
 orow = orow + 1
 call tbeptd (otp, ocp[1], orow, value[1])
 call tbeptd (otp, ocp[2], orow, value[2])
 }
 }

 # 2. Use the get-row and put-row routines. This will copy
 # any number of columns, one row at a time.
 orow = 0
 do irow = 1, inrows {
 call tbrgtd (itp, icp, value, nullflag, NCOLS, irow)
 bad = false
 do i = 1, NCOLS
 if (nullflag[i])
 bad = true
 if (!bad) {
 orow = orow + 1
 call tbrptd (otp, ocp, value, NCOLS, orow)
 }
 }

Example 5.2 (Continued): Copying Columns.

(Continued...)

Header Parameters 227

 # 3. Use the get-column and put-column routines.
 call salloc (ira, inrows, TY_DOUBLE)
 call salloc (idec, inrows, TY_DOUBLE)
 call salloc (ra_flag, inrows, TY_BOOL)
 call salloc (dec_flag, inrows, TY_BOOL)
 call salloc (ora, inrows, TY_DOUBLE) # possibly more than we need
 call salloc (odec, inrows, TY_DOUBLE)
 call tbcgtd (itp, icp[1], Memd[ira], Memb[ra_flag], 1, inrows)
 call tbcgtd (itp, icp[2], Memd[idec], Memb[dec_flag], 1, inrows)

 # Note that irow and orow are zero indexed in this loop.
 orow = -1
 do irow = 0, inrows-1 {
 if (!Memb[ra_flag+irow] && !Memb[dec_flag+irow]) {
 orow = orow + 1
 Memd[ora+orow] = Memd[ira+irow]
 Memd[odec+orow] = Memd[idec+irow]
 }
 }
 onrows = orow + 1 # number of rows in output table
 if (orow > 0) {
 call tbcptd (otp, ocp[1], Memd[ora], 1, onrows)
 call tbcptd (otp, ocp[2], Memd[odec], 1, onrows)
 }

 # Done. Three times, even.
 call tbtclo (itp)
 call tbtclo (otp)
 call sfree (sp)
end

Example 5.2 (Continued): Copying Columns.

Header Parameters

Tables may contain header parameters consisting of a keyword name,
data type flag, and a value. These are stored in the table as text strings.
These parameters arenot used for information such as the number of rows
or columns, and the table I/O routines do not use header parameters when
getting or putting table elements. The same data types are supported for
header parameters as for table data, and type conversion is performed,
except that a value stored as a text string may only be gotten as text, not as
numeric or boolean. The distinction betweenadding andputting values is
the same as for image header keywords. You can calltbhptT to put a
header parameter only if that parameter already exists in the table, but you
can calltbhadT to either add a new header parameter or replace an
existing one. In contrast to theimio interface, when you open a table
NEW_COPY, the header parameters are not copied.

228 Appendix E: STSDAS Tables

.

Table E.6: Header Parameter Procedures.

The tbset.h Include File

This section describes the include filetbset.h. In most situations the
only parameters that will be needed areSZ_COLNAME andTBL_NROWS.

These three are used for declaring the sizes ofchar variables for
column names, units, and print formats.

• SZ_COLNAME - Maximum length of a column name

• SZ_COLUNITS - Maximum length of string for units

• SZ_COLFMT - Maximum length for print format

Procedure Data Types Description

value = tbhgtT (tp, param) b d i r Get a numeric header parameter

tbhgtt (tp, param, text, maxch) Get a string header parameter

tbhadT (tp, param, value) t b d i r Add a new header parameter or
replace existing one

tbhptT (tp, param, value) t b i r d Replace an existing header
parameter

tbhcal (itp, otp) Copy all header parameters

tbhgnp (tp, parnum, keyword,
 dtype, str)

Get Nth header parameter as a
string

The tbset.h Include File 229

The next four parameters may be read bytbpsta but may not be set:

Table E.7: Non-settable Parameters Read by tbpsta.

These may be set bytbpset or read bytbpsta. Parameters
TBL_ROWLEN andTBL_INCR_ROWLEN are relevant only to row-ordered
tables, whileTBL_ALLROWS and TBL_INCR_ALLROWS are relevant
only to column-ordered tables.TBL_ROWLEN is for setting the row length
to a specific value. In contrast,TBL_INCR_ROWLEN is used to increase
the row length by the specified amount over its current value, whatever that
may be. The latter is more useful. When creating a new table, we suggest
the following procedure for a row-ordered table. After callingtbtopn,
define columns usingtbcdef. Then the row length will be sufficient for
the columns that have been defined. If you will need to define more
columns after the table has been created, you can calltbpset with
TBL_INCL_ROWLEN to preallocate the needed space before creating the
table with tbtcre. The numerical value would be one for each
single-precision or integer column, and two for each double-precision
column. For character strings, divide the maximum string length by the
number of bytes in a single-precision variable and round up.

Parameter Meaning

TBL_NROWS Number of rows written to

TBL_NCOLS Number of columns defined

TBL_ROWLEN_USED Amount of row length used (unit
= size of single precision)

TBL_NPAR Number of user parameters

230 Appendix E: STSDAS Tables

Table E.8: Table Parameters That Can be Read or Set.

The table type as set or read usingTBL_WHTYPE is defined byt the
parameters in Table E.9.

Table E.9: Table Types.

The parameters described in Table E.10 have to do with the file size and
file I/O buffer size.

Table E.10: Table Size and File I/O Buffer Size.

Parameter Meaning

TBL_ROWLEN Row length to allocate (units are the size of a
single-precision)

TBL_INCR_ROWLEN Increase row length (in single-precision units)

TBL_ALLROWS Number of rows to allocate

TBL_INCR_ALLROWS Increase number of allocated rows

TBL_WHTYPE Type of table? (see below)

TBL_MAXPAR Maximum number of user parameters

TBL_MAXCOLS Maximum number of columns

Parameter Meaning

TBL_TYPE_S_ROW Row-ordered binary table

TBL_TYPE_S_COL Column-ordered binary table

TBL_TYPE_TEXT Text file

Parameter Meaning

TBL_ADVICE SetRANDOM orSEQUENTIAL

TBL_BUFSIZE Get buffer size in characters

TBL_DATA_SIZE Get size of table data in characters

Print Formats 231

The parameters are for getting information about a column using
tbcigt ortbcigi.

Table E.11: Getting Column Information.

Table E.12: Table Parameter Procedures.

Print Formats

The print format is used by such tasks astprint, tedit, and tread to
determine how the column values are to be displayed. The earlier statement
that the print format does not affect the way the values are stored in the
table is really only true for binary tables. For output (or read-write) text
tables the print format is actually used to write the file, so it is critical with
regard to the precision of the data values. Most of the ordinary Fortran
formats are supported for tables. SPP formats are discussed in thefmtio
section of this document. The only SPP print formats that are not allowed

Parameter Meaning

TBL_COL_NAME Column name

TBL_COL_UNITS Units for column

TBL_COL_FMT Print format for displaying values

TBL_COL_DATATYPE Data type (-n for character string)

TBL_COL_NUMBER Column number

TBL_COL_FMTLEN Length for printing using print format

TBL_COL_LENDATA Number of elements if colum is an array

Procedure Description

tbpset (tp, setwhat, value) Set a table parameter

int = tbpsta (tp, param) Get the value of a table parameter (e.g.
number of rows)

int = tbcigi (colptr, param) Get information about column (integer)

tbcigt (colptr, param,
 outstr maxch)

Get information about column (string)

232 Appendix E: STSDAS Tables

are those that are simply irrelevant, such ast, w, andz. The field width
may not be zero, however. The proceduretbbftp may be used to convert
a user-supplied Fortran style format to an SPP style format.

 Table E.13 is a list of the default print format for each data type, given
in both SPP style and Fortran style.

Table E.13: Default Print Formats.

For character strings “n” is the string size as given when the column was
defined. The minus sign means that the string will be left justified. While a
format such as “A-12” is not available in standard Fortran, thetbbftp
routine will convert it to “%-12s”.

SPP formats and Fortran equivalents that are supported for tables are
listed in this table. The syntax is%w.dC (SPP style) orCw.d (Fortran
style), wherew is the field width,d is the number of decimal places (or
precision forg format), andC is the format code as given in the left column
below. When giving a format in Fortran style, use the format code given in
the second column; these are shown in upper case but may also be given in
lower case. Note thatH and M are not standard Fortran formats; in
particular, H is not interpreted as Hollerith.

Data type SPP Fortran

real %15.7g G15.7

double prec %25.16g G25.16

integer %11d I11

boolean %6b L6

text string %-ns A-n

Table Utilities 233

Table E.14: Table Print Formats.

Table Utilities

TableE.15 lists some table utility procedures. These permit operating on
entire columns or rows and performing other funtions on the table as a
whole.

Note also that thetbtables package of tasks in the STSDAS external
package that allows flexible and sophisticated manipulation of existing
tables without writing any code. These include such database-related
functions as extracting selected rows based on the value of particular fields,
extracting given columns by name, printing a report from a table or editing

SPP Fortran Meaning

b L Boolean “yes” or “no”

d I Integer, displayed in decimal

x Z Integer, displayed in hexadecimal

e E or D Exponential format

f F Floating point

g G Use F or E as appropriate

h H HH:MM:SS.d (sexagesimal)

m M HH:MM.d (sexagesimal)

s A Character string

234 Appendix E: STSDAS Tables

a table in-place. See help tbtables for a list of the tasks and a brief
description of each.

Table E.15: Table Utility Procedures.

Procedure Description

tbtchs (tp, maxpar, maxcols, rowlen,
 allrows)

Change allocated space of any/all portions of a table

tbrcpy (itp, otp, irownum, orownum) Copy an entire row (only for tables with identical
columns)

tbrcsc (itp, otp, icptr, ocptr,
 irownum, orownum, ncols)

Copy a row, but copy only selected columns

tbrswp (tp, row1, row2) Swap two rows

tbtsrt (tp, numcols, colptr, fold,
 nindex, index)

Sort an index for the table rows

tbrdel (tp, firstrow, lastrow) Delete a range of rows

tbrnll (tp, firstrow, lastrow) Set all columns in a range of rows to INDEF

tbcnam (tp, colptr, colname) Change the name of a column

tbcfmt (tp, colptr, colfmt) Change the format for printing a column

tbcnit (tp, colptr, colunits) Change the units for a column

colptr = tbcnum (tp, colnum) Get the column pointer from the column number

 235

A P P E N D I X A :

Bibliography

[Abramowitz65] Abramowitz,M. and I. Stegun,Handbook of Mathematical Functions,
1965, Dover, New York.

[Downey82] E. Downey, D. Tody, and G. Jacoby, CL Programmer’s Manual, 1982.
Describes programming in the IRAF cl , including definition of the
parameter file syntax,doc$clman.ms in IRAF.

[Downey83] E. Downey, et. al.,IRAF Standards and Conventions, 1983. Describes
conventions for writing SPP applications.

[Seaman92] R. Seaman,An Introductory User’s Guide to IRAF SPP Programming,
1992. Complementary to this document, providing more
implementation instructions and examples.

[Shames86] P. Shames and D. Tody, A User’s Introduction to the IRAF Command
Language. Another introduction to using the IRAF cl,
doc$cluser.tex in IRAF.

[Tody83] D. Tody, A Reference Manual for the IRAF Subset Preprocessor
Language, 1983. The original SPP reference manual. Available in IRAF
asdoc$spp.hlp.

[Tody83b] D. Tody, Programmer’s Crib Sheet for the IRAF Program Interface,
1983. Original description of the VOS interface. Available in IRAF as
doc$crib.hlp

[Tody84] D. Tody and G. Jacoby, A User’s Guide to the IRAF Command
Language, 1984. An introduction to using the IRAF cl,
doc$cluser.ms in IRAF.

[Tody84b] D. Tody, Graphics I/O Design, 1984. The defining description of thegio
library package for using graphics in SPP applications and the basis for
the material presented in “Vector Graphics — gio” on page114,
gio$doc/gio.hlp in IRAF. See alsohelp cursors in the IRAF
cl for more information on graphics cursor interaction.

235

236 Bibliography

[Tody86] D. Tody, Named External Parameter Sets in the CL, 1986. The defining
description of parameter sets in the IRAF cl ,doc$pset.ms in IRAF.

[Tody88] D. Tody, The IRAF Pixel List Package and IMIO Extensions to Support
Image Masks, 1988. The defining description of the plio library package
and the basis for “Pixel Lists — plio” on page127,plio$PLIO.hlp
in IRAF.

[Tody89] D. Tody, Mini-WCS Interface, 1989. The defining description of the
mwcs library package and the basis for “World Coordinates — mwcs”
on page129,mwcs$MWCS.hlp in IRAF.

 237

A P P E N D I X B :

Glossary
The following terms and acronyms are used in SPP, additional terms,

generic to IRAF and STSDAS, are defined in the glossary in the STSDAS
Users Guide.

access mode - How to open a file or image, read-only, read-write, for
example.

argument - A value passed to a procedure. Also in the cl, a value passed to
a task.

assignment - Replace the value of a variable.
asynchronous error - An error that results in control passing to a proce-

dure other than the one in which the error occured.
boolean - A binary value, yes or no, true or false.
cell array - Grey scale image, sometimes also known as a raster or pixmap.
clio - Interaction with the cl. The VOS library of procedures for accessing

cl parameters.
coercion - (As in type coercion.) Conversion of a value from one data type

into another. Commonly by simple assignment of variables.
comment - Text in a program file that is not executed and is retained for

information purposes. In SPP, comments begin with the # character.
common blocks - A set of ariables available to more than one procedure

through common memory.
compile - To process source code intoobject code, combined with other

procedures to make a program (see “link”).
constant - An identifier having a fixed value.
data structure - The organization of data in a commonly accessible form.

Often includes multiple data types and arrays.
data type - The basic attribute of a variable, constant or data value such as

integer, floating point (real), double precision, boolean or complex.
dimensionality - The number and sizes of axes of an array.
double precision - A floating point value having more bits for the mantissa.
error - An abnormal condition in a program

237

238 Appendix B: Glossary

error handler - A procedure called on an error condition to perform some
activity such as closing files and cleaning up memory.

escape sequence - Characters including metacharacters that change the
interpretation of other characters. The backslash (“\”) is an escape
to permit specifying a character constant in SPP.

file descriptor - A pointer to a structure describing a file.
file name template - A file name possibly referring to more than one file,

including wild-cards or a list of individual file names, or a pointer
to a file containing a list of files.

filter - A program that transforms a data set in some way without altering
the fundamental structure of the data.

fio - Basic binary file I/O not limited to images or any particular structure.
flag - A variable indicating one of a set of possible conditions.
floating point - A value having a decimal and fractional part.
fmtio - Formatted I/O. The procedures for standard text and numeric I/O to

files and terminals.
function - A procedure returning a value assigned to a variable.
gcur - Graphics cursor. Treated by the cl as a cl parameter and accessed in

SPP via a clio procedure returning the coordinates of the cursor.
generic operator - A function or operator that can be used for any of sev-

eral data types.
generic preprocessor - The program that converts generic source into com-

pilable code specific to a given data type.
gio - Graphics I/O. The set of VOS procedures for drawing graphs.
graphcap - The file that describes attributes of graphics devices.
header parameter - A value stored as part of an image file, used to describe

the image.
heap memory - Dynamically allocated memory accessed with themalloc

family of procedures.
identifier - A string or sequence of characters having a recognized meaning

such as a variable or procedure name.
image section - (see “section.”)
imcur - Image cursor. A cl parameter type returning coordinates from an

image display.
imio - Image I/O. The library of procedures for accessing IRAF images.
include file - Source code that can be inserted as-is into other source by

referring to a file name.

 239

index - An integer constant or variable indicating a particular element of an
array.

integer - A constant or variable having no fractional part.
intrinsic function - A function built in to the language. In general, the data

type of the arguments and returned value may be any valid data
type.

kernel - The low-level routines implementing the system. The system pro-
cedures dealing with a particular image format. The “device driv-
ers” for rendering graphics on a class of devices.

keyword - An identifier or character string reserved for some purpose such
as image header parameters.

learning - The capability of the IRAF cl to remember the value of a task
parameter from execution to execution.

library - A file containing compiled procedures (object code) and linked
with an application.

link - Combine compiled code to make an executable program.
logical task - An IRAF task implemented as part of a package or physical

task.
longword boundary - Locations in data memory separating the longest

addressable units of data.
macro - A string identified with a symbol and replaced by string substitu-

tion in code.
mask - An image whose values indicate particular properties of another

image or matching size. A mask might specify bad detector element
or relative errors of pixels.

matrix - A grouping of values in a rectangular array.
memio - The VOS library of procedures for dynamically allocating mem-

ory.
metacharacters - Literal characters interpreted by a parser.
mii - Machine Independent I/O. A method of converting data that is inde-

pendent of the host computer architecture. The library of proce-
dures to perform these conversions.

mixed mode - An expression involving variables or constants of different
data types.

mkpkg - The program that combines compiling, linking and maintaining
source and objects.

mode - Manner in which CL handles prompting and learning when dealing
with parameters.

240 Appendix B: Glossary

mtio - Magnetic tape I/O.
mwcs - Mini World Coordinate System.
NDC - Normalized Device Coordinates. A graphics coordinate system rel-

ative to the device.
newline - A character interpreted as a delimiter between lines of text.
OIF - Old IRAF format. The native IRAF image format consisting of a pair

of binary files, a header describing the image and a separate pixel
file.

operators - Functions combining values in an expression such as+, -, &&.
osb - Bit and byte operations.
package - A library of procedures grouped by common function or a group

of application tasks grouped by common function.
parameters - The arguments to a program accessed via clio from the cl.
pen - The logical position of drawing graphics.
physical task - An executable IRAF program, possibly comprising multiple

“logical tasks.”
plio - Pixel list I/O.
pointer - Reference to dynamically allocated memory addresses.
predefined constant - A program value defined at compile time, either in a

data statement or as a symbolic macro.
preprocessor - An operation applied to program source before compilation.

The generic preprocessor permits defining common code for multi-
ple data types. xc is the preprocessor for converting SPP into For-
tran.

primitives - Relatively low-level procedures performing well-defined func-
tions.

procedure - The smallest executable unit of a program, called by another
procedure or as a task from the cl.

prompt - A request for input from the user via a prompt to the terminal
(window).

pset - A file containing cl parameters. A pset must be defined as a task in
the cl and assigned to another task parameter. The parameter values
are then available to an application as any cl parameter.

pushback - The opposite of reading from an input stream or file. Data
pushed back is then available for reading.

QPOE - Quick Position-Oriented Event image; the native image format for
thexray analysis package developed by PROS.

Ratfor - Rational Fortran. One of the steps in converting SPP into Fortran.

 241

scalar - A single-valued variable.
section - (As in “image section.”) A portion of an IRAF image treated in an

application as any image.
stack memory - Dynmically allocated memory.
STF - STSDAS format images also known as GEIS format. The native

image format for HST observations. STF images are largely inter-
changeable with OIF images.

stream - A source of data logically consisting of a string of characters. The
standard input (STDIN), standard output (STDOUT) and standard
graphics (STDGRAPH) are the most commonly used streams.

string - Sequence of characters enclosed in quotes, for example,“abc” .
structure - See “data structure.”
symbolic constant - A numeric value or literal string represented by an

identifier. In compiled code, the value replaces the identifier by
simple string substitution.

task - A program known to IRAF, a command in the cl.
templates - See “file name templates.”
termcap - The IRAF file that describes attributes of text terminals.
token - The smallest sequence of characters recognized by a parser, a num-

ber or identifier, for example.
tty - Terminal I/O.
unary operator - An operator requiring only one operand, such as nega-

tion.
vector - An array, a contiguous group of values accessed through a com-

mon variable name.
vops - Vector operators. The library of procedures that operate on arrays,

potentially optimized for the host architecture.
VOS - Virtual operating system. The set of procedures called by an applica-

tions tasks for performing IRAF functions.
WCS - World Coordinate System. Coordinates associated with data rather

than a device or an arbitrary scale.
white space - Any number of tabs, spaces or newline characters separating

entities in a string.
word - The fundamental unit of accessing data in a program, usually sev-

eral bytes long. The word size varies between host architectures.
xc - The program that compiles and links SPP, Fortran, and C code to pro-

duce an executable, or physical task.

242 Appendix B: Glossary

Index 243

Symbols
: 4, 26
" 6
3
% 7, 125, 206, 209
, 4, 12
@ 3, 5
{} 24, 35
’ 5

A
access mode96
actual

argument35
align 20
allocation

memory53
ARB 12
argument31, 35

actual35
procedure34, 205

arithmetic
error 156
operator32, 104

array 9, 11, 12, 53, 207
index 12
operator103
parameter50

ASCII 5
assignment15
assignment statement34

B
backslash5
begin 16, 34, 35
binary operator32

bitfield 137
bool 10
boolean10

operator32, 105
braces35
brackets68
break25, 26, 29
byte 123

swapping126, 185

C
call 35
case26
char 9
character5, 9, 88, 123, 188
character set2
character string207
cl 45, 192

command52
parameters45

clio 45
cluster68
code

format 79
coercion

type 33, 38
comma4
command

cl 52
comment3, 40
common14, 19
common block14
comparison

character124
logical 106
string 90

Index

244 Index

compile 163
complex4, 10

operator109
compound statement24
conditional24
constant

character5
floating point4
integer3
mathematical186
predefined175
string 6
symbolic 16, 17, 156

continuation3
control 24
conversion

byte 123
character123
pointer 183

coordinates129
cursor119

graphics51

D
data15
data structure16, 18, 58, 183
data type8, 33

boolean10
character9
code177
coercion33, 38
floating point10
in table219
integer9
parameter171
pointer 8, 11
string 9

debugging215
decimal3
declaration11
default 26
define16, 31
descriptor63
dimension12, 61
do 29
double4, 10

double quotes6
dummy 35
dynamic memory53, 210, 216

E
else25
end 34, 35
entry 36
environment variable142
EOF 65
EOS 9, 88, 114, 125
errchk 149
error 147
error handler153
escape206

character169, 209
escape sequences5
evaluating expression91
expression25, 31

evaluation91
mixed mode33

extension62
extern8, 14
external function14

F
file

I/O 95, 179
include 39
parameter47, 171
type 179

filter 194
fio 95
FITS 69
floating point4, 10
fmtio 78
for 28
format 78

internal 85
table 231

format code79
formatted

I/O 78
input 83

formatted I/O209

Index 245

Fortran1, 4, 7, 9, 38, 53, 78, 81, 89,

125, 163, 166, 191, 206, 215,

216, 217
function 13, 30, 34, 35

external13
inline 23
intrinsic 33, 36
statement16

G
generic preprocessor41, 167
gio 114, 198
goto 30
graphics114

cursor119
interactive200

H
handler

error 153
header

image69
heap54
help 40
hexadecimal3
host architecture184

I
I/O 175

file 95, 179
binary 98
text 100

formatted78, 209
image60, 179, 196, 210

line 63
section66

line by line 65
mode180
pixel list 127
stream95
table 219
terminal 119

identifier 2, 3, 6
mapping215

if 25
iferr 148

image127, 194
coordinates129
header69
I/O 60, 179, 196, 210

line by line 65
section66

line 65
line I/O 63
name

template75
open61
parameter69
section68, 74
template62

imio 60, 196
include 39, 43, 190
include file39
INDEF 181
indefinite 181
indentation25
index

array 12
initialization 15
inline functions23
input

formatted83
integer9

decimal3
internal format85
intrinsic function33, 36

L
label

statement30
language175
lexical form 7
library 43, 163
line by line I/O65
link 43, 163
list structured parameter48
logical 10

comparison106
operator32

logical tasks161
long 9
looping 27

246 Index

M
machine184
macro13, 16, 31, 58, 175
malloc 54
manual pages40
mapping

identifier 215
mask127
mathematical constant186
matrix 138
memio 53
memory63

allocation53
dynamic53, 210, 216
heap54
stack57

mii 126
mixed mode33
mkpkg 163, 204
mode

access96
I/O 180
parameter172

mwcs 129

N
newline 1, 81
next 25, 29
null statement28

O
octal 3
open95

image61
operator

arithmetic32, 104
binary 32
boolean32
logical 32
precedence31
unary 32

osb 123
output 78

buffered 209

P
pack 123, 124
package43, 44, 163, 173
par 47, 50, 171, 174
parameter45

array 50
cl 45, 192
cursor51
file 47, 171
image69
list structured48
pset48
set 172
standard72
vector 50

parentheses4, 16, 31
pattern matching75
percent7, 209
physical task161
pixel list 127
plio 127
plotting 114
pointer 8, 11, 20, 22, 63, 183
precedence

data type33
operator31

preprocessorxiii , 1
generic41, 167

printf 78
procedure34

argument34, 35, 205
process144
program38
pset48, 172
pushback100

Q
quote

single 5
quotes

double6

R
Ratfor 1, 163, 166
real 4, 10

Index 247

repeat28
reserved identifier7
return 30, 35

S
salloc 57
scalar11
scan83
section

image66, 68, 74
sexagesimal4
short 9
single quote5
smark57
space

white 2
stack memory57
standard parameter72
statement2, 24, 35

assignment34
compound24
Fortran7
function 16
label 30
null 24, 28

stream
I/O 95

string 9, 15, 207
character88, 207
comparison90
constant 6
pack 123
substitution 16

structure16, 18, 58, 64, 183
STSDAS table219
switch 26
symbolic constant13, 15, 16, 17,

61, 156, 175
syntaxxiii

T
table

STSDAS219
task 40, 52, 161, 217
template62

file name101
image name75

terminal I/O119
time 143
tty 119
type coercion33, 38, 53, 92

U
unary operator32
unpack123, 124
until 28
update163
user area69

V
variable

array 12
environment142
scalar11

vector
operator103
parameter50

vops 103

W
while 27
white space2, 25, 84, 86
wild card 75
word 84
world coordinates129

X
xc 1, 166

248 Index

